(2012•成都)如圖,△ABC和△DEF是兩個(gè)全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點(diǎn)E與△ABC的斜邊BC的中點(diǎn)重合.將△DEF繞點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中,線段DE與線段AB相交于點(diǎn)P,線段EF與射線CA相交于點(diǎn)Q.
(1)如圖①,當(dāng)點(diǎn)Q在線段AC上,且AP=AQ時(shí),求證:△BPE≌△CQE;
(2)如圖②,當(dāng)點(diǎn)Q在線段CA的延長(zhǎng)線上時(shí),求證:△BPE∽△CEQ;并求當(dāng)BP=a,CQ=
92
a
時(shí),P、Q兩點(diǎn)間的距離 (用含a的代數(shù)式表示).
分析:(1)由△ABC是等腰直角三角形,易得∠B=∠C=45°,AB=AC,又由AP=AQ,E是BC的中點(diǎn),利用SAS,可證得:△BPE≌△CQE;
(2)由△ABC和△DEF是兩個(gè)全等的等腰直角三角形,易得∠B=∠C=∠DEF=45°,然后利用三角形的外角的性質(zhì),即可得∠BEP=∠EQC,則可證得:△BPE∽△CEQ;根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得BE的長(zhǎng),即可得BC的長(zhǎng),繼而求得AQ與AP的長(zhǎng),利用勾股定理即可求得P、Q兩點(diǎn)間的距離.
解答:(1)證明:∵△ABC是等腰直角三角形,
∴∠B=∠C=45°,AB=AC,
∵AP=AQ,
∴BP=CQ,
∵E是BC的中點(diǎn),
∴BE=CE,
在△BPE和△CQE中,
BE=CE
∠B=∠C
BP=CQ

∴△BPE≌△CQE(SAS);

(2)解:連接PQ,
∵△ABC和△DEF是兩個(gè)全等的等腰直角三角形,
∴∠B=∠C=∠DEF=45°,
∵∠BEQ=∠EQC+∠C,
即∠BEP+∠DEF=∠EQC+∠C,
∴∠BEP+45°=∠EQC+45°,
∴∠BEP=∠EQC,
∴△BPE∽△CEQ,
BP
CE
=
BE
CQ
,
∵BP=a,CQ=
9
2
a,BE=CE,
a
CE
=
CE
9
2
a
,
∴BE=CE=
3
2
2
a,
∴BC=3
2
a,
∴AB=AC=BC•sin45°=3a,
∴AQ=CQ-AC=
3
2
a,PA=AB-BP=2a,
在Rt△APQ中,PQ=
AQ2+AP2
=
5
2
a.
點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì)、等腰直角三角形的性質(zhì)、全等三角形的判定與性質(zhì)以及勾股定理.此題難度較大,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•成都)如圖所示的幾何體是由4個(gè)相同的小正方體組成.其主視圖為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•成都)如圖,將平行四邊形ABCD的一邊BC延長(zhǎng)至E,若∠A=110°,則∠1=
70°
70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•成都)如圖,在平面直角坐標(biāo)系xOy中,直線AB與x軸、y軸分別交于點(diǎn)A,B,與反比例函數(shù)y=
k
x
(k為常數(shù),且k>0)在第一象限的圖象交于點(diǎn)E,F(xiàn).過(guò)點(diǎn)E作EM⊥y軸于M,過(guò)點(diǎn)F作FN⊥x軸于N,直線EM與FN交于點(diǎn)C.若
BE
BF
=
1
m
(m為大于l的常數(shù)).記△CEF的面積為S1,△OEF的面積為S2,則
S1
S2
=
m-1
m+1
m-1
m+1
. (用含m的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•成都)如圖,AB是⊙O的直徑,弦CD⊥AB于H,過(guò)CD延長(zhǎng)線上一點(diǎn)E作⊙O的切線交AB的延長(zhǎng)線于F.切點(diǎn)為G,連接AG交CD于K.
(1)求證:KE=GE;
(2)若KG2=KD•GE,試判斷AC與EF的位置關(guān)系,并說(shuō)明理由;
(3)在(2)的條件下,若sinE=
3
5
,AK=2
3
,求FG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•成都)如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=
5
4
x+m
(m為常數(shù))的圖象與x軸交于點(diǎn)A(-3,0),與y軸交于點(diǎn)C.以直線x=1為對(duì)稱軸的拋物線y=ax2+bx+c(a,b,c為常數(shù),且a≠0)經(jīng)過(guò)A,C兩點(diǎn),并與x軸的正半軸交于點(diǎn)B.
(1)求m的值及拋物線的函數(shù)表達(dá)式;
(2)設(shè)E是y軸右側(cè)拋物線上一點(diǎn),過(guò)點(diǎn)E作直線AC的平行線交x軸于點(diǎn)F.是否存在這樣的點(diǎn)E,使得以A,C,E,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)E的坐標(biāo)及相應(yīng)的平行四邊形的面積;若不存在,請(qǐng)說(shuō)明理由;
(3)若P是拋物線對(duì)稱軸上使△ACP的周長(zhǎng)取得最小值的點(diǎn),過(guò)點(diǎn)P任意作一條與y軸不平行的直線交拋物線于M1(x1,y1),M2(x2,y2)兩點(diǎn),試探究
M1P•M2P
M1M2
是否為定值,并寫出探究過(guò)程.

查看答案和解析>>

同步練習(xí)冊(cè)答案