【題目】如圖,已知A(﹣4, ),B(﹣1,2)是一次函數y=kx+b與反比例函數y= (m≠0,x<0)圖象的兩個交點,AC⊥x軸于C,BD⊥y軸于D.
(1)根據圖象直接回答:在第二象限內,當x取何值時,一次函數大于反比例函數的值?
(2)求一次函數解析式及m的值;
(3)P是線段AB上的一點,連接PC,PD,若△PCA和△PDB面積相等,求點P坐標.
【答案】
(1)解:由圖象得一次函數圖象在上的部分,﹣4<x<﹣1,
當﹣4<x<﹣1時,一次函數大于反比例函數的值
(2)解:設一次函數的解析式為y=kx+b,
y=kx+b的圖象過點(﹣4, ),(﹣1,2),則
,
解得
一次函數的解析式為y= x+ ,
反比例函數y= 圖象過點(﹣1,2),
m=﹣1×2=﹣2
(3)解:連接PC、PD,如圖,
設P(x, x+ )
由△PCA和△PDB面積相等得
× ×(x+4)= ×|﹣1|×(2﹣ x﹣ ),
x=﹣ ,y= x+ = ,
∴P點坐標是(﹣ , ).
【解析】(1)根據一次函數圖象在上方的部分是不等式的解,觀察圖象,可得答案;(2)根據待定系數法,可得函數解析式;(3)根據三角形面積相等,可得答案.
科目:初中數學 來源: 題型:
【題目】某校開展以感恩教育為主題的藝術活動,舉辦了四個項目的比賽,它們分別是演講、唱歌、書法、繪畫.要求每位同學必須參加,且限報一項活動.以九年級(1)班為樣本進行統(tǒng)計,并將統(tǒng)計結果繪成如圖1、圖2所示的兩幅統(tǒng)計圖.請你結合圖示所給出的信息解答下列問題.
(1)求出參加繪畫比賽的學生人數占全班總人數的百分比?
(2)求出扇形統(tǒng)計圖中參加書法比賽的學生所在扇形圓心角的度數?
(3)若該校九年級學生有600人,請你估計這次藝術活動中,參加演講和唱歌的學生各有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知過原點O的兩直線與圓心為M(0,4),半徑為2的圓相切,切點分別為P、Q,PQ交y軸于點K,拋物線經過P、Q兩點,頂點為N(0,6),且與x軸交于A、B兩點.
(1)求點P的坐標;
(2)求拋物線解析式;
(3)在直線y=nx+m中,當n=0,m≠0時,y=m是平行于x軸的直線,設直線y=m與拋物線相交于點C、D,當該直線與⊙M相切時,求點A、B、C、D圍成的多邊形的面積(結果保留根號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a≠0)的大致圖象如圖,關于該二次函數,下列說法錯誤的是( )
A.函數有最小值
B.對稱軸是直線x=
C.當x< ,y隨x的增大而減小
D.當﹣1<x<2時,y>0
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AC是直徑,過點O作OD⊥AB于點D,延長DO交⊙O于點P,過點P作PE⊥AC于點E,作射線DE交BC的延長線于F點,連接PF.
(1)若∠POC=60°,AC=12,求劣弧PC的長;(結果保留π)
(2)求證:OD=OE;
(3)求證:PF是⊙O的切線.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C、D在⊙O上,且AC平分∠BAD,點E為AB的延長線上一點,且∠ECB=∠CAD.
(1)填空:∠ACB= ,理由是
(2)求證:CE與⊙O相切
(3)若AB=6,CE=4,求AD的長
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com