【題目】如圖,⊙O的半徑為2,△ABC是⊙O的內(nèi)接三角形,連接OB、OC.若∠BAC與∠BOC互補,則弦BC的長為(

A.4
B.3
C.2
D.

【答案】C
【解析】解∵∠BAC與∠BOC互補,
∴∠BAC+∠BOC=180°,
∵∠BAC= ∠BOC,
∴∠BOC=120°,
過O作OD⊥BC,垂足為D,
∴BD=CD,
∵OB=OC,
∴OB平分∠BOC,
∴∠DOC= ∠BOC=60°,
∴∠OCD=90°﹣60°=30°,
在Rt△DOC中,OC=2,
∴OD=1,
∴DC=
∴BC=2DC=2 ,
故選C.

【考點精析】關(guān)于本題考查的垂徑定理和三角形的外接圓與外心,需要了解垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條;過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點M(﹣3,m)是一次函數(shù)y=x+1與反比例函數(shù)y=(k≠0)的圖象的一個交點.

(1)求反比例函數(shù)表達式
(2)點P是x軸正半軸上的一個動點,設(shè)OP=a(a≠2),過點P作垂直于x軸的直線,分別交一次函數(shù),反比例函數(shù)的圖象于點A,B,過OP的中點Q作x軸的垂線,交反比例函數(shù)的圖象于點C,△ABC′與△ABC關(guān)于直線AB對稱.
①當a=4時,求△ABC′的面積;
②當a的值為 3 時,△AMC與△AMC′的面積相等。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=AC=AD,且AD∥BC,求證:∠C=2∠D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,D是BC的中點,AC的垂直平分線分別交AC、AD、AB于點E、O、F,則圖中全等三角形的對數(shù)是( 。

A.1對
B.2對
C.3對
D.4對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為8cm,E、F、G、H分別是AB、BC、CD、DA上的動點,且AE=BF=CG=DH.

(1)求證:四邊形EFGH是正方形
(2)判斷直線EG是否經(jīng)過一個定點,并說明理由
(3)求四邊形EFGH面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標系內(nèi),小正方形網(wǎng)格的邊長為1個單位長度,△ABC的三個頂點的坐標分別為A(﹣1,3),B(﹣4,0),C(0,0)

(1)畫出將△ABC向上平移1個單位長度,再向右平移5個單位長度后得到的△A1B1C1;
(2)畫出將△ABC繞原點O順時針方向旋轉(zhuǎn)90°得到△A2B2O;
(3)在x軸上存在一點P,滿足點P到A1與點A2距離之和最小,請直接寫出P點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊由長為30米的籬笆圍成.已知墻長為18米(如圖所示),設(shè)這個苗圃園垂直于墻的一邊長為x米.

(1)若苗圃園的面積為72平方米,求x;
(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半徑為5的⊙O中,AB、CD是互相垂直的兩條弦,垂足為P,且AB=CD=8,則OP的長為(

A.3
B.4
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與邊BC,AC分別交于D,E兩點,過點D作DH⊥AC于點H.
(1)判斷DH與⊙O的位置關(guān)系,并說明理由;
(2)求證:H為CE的中點;
(3)若BC=10,cosC= ,求AE的長.

查看答案和解析>>

同步練習(xí)冊答案