【題目】如圖,二次函數(shù)y=ax2+bx+ca≠0)的圖象與x軸交于點A、B兩點,與y軸交于點C,對稱軸為直線x=﹣1,點B的坐標為(1,0),則下列結(jié)論:①AB=4;②b2﹣4ac0;③ab0;④a2﹣ab+ac0,其中正確的結(jié)論有( 。﹤

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】試題解析:∵拋物線的對稱軸為直線x=-1,點B的坐標為(1,0),

A-3,0),

AB=1--3=4,所以①正確;

∵拋物線與x軸有2個交點,

∴△=b2-4ac0,所以②正確;

∵拋物線開口向下,

a0,

∵拋物線的對稱軸為直線x=-=-1,

b=2a0,

ab0,所以③錯誤;

x=-1時,y0,

a-b+c0,

a0,

aa-b+c)<0,所以④正確.

故選C

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O是菱形ABCD的對角線的交點,E、F分別是OA、OC的中點,下列結(jié)論:①四邊形BFDE是菱形;②S四邊形ABCDEF×BD;③∠ADE=∠EDO;④△DEF是軸對稱圖形.其中正確的結(jié)論有( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=2mx2+(1﹣4m)x+2m﹣1,下列結(jié)論錯誤的是( 。

A. m=0時,yx的增大而增大

B. m=時,函數(shù)圖象的頂點坐標是(,﹣

C. m=﹣1時,若x<,則yx的增大而減小

D. 無論m取何值,函數(shù)圖象都經(jīng)過同一個點

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩同學的家與學校的距離均為3200米.甲同學先步行200米,然后乘公交車去學校,乙同學騎自行車去學校.已知甲步行速度是乙騎自行車速度的,公交車的速度是乙騎自行車速度的3倍.甲、乙兩同學同時從家出發(fā)去學校,結(jié)果甲同學比乙同學早到8分鐘.

1)求乙騎自行車的速度;

2)當甲到達學校時,乙同學離學校還有多遠?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線與x軸交于A(x1,0)、B(x2,0)兩點,且x1<x2,與y軸交于點C(0,﹣4),其中x1,x2是方程x2﹣4x﹣12=0的兩個根.

(1)求A、B兩點坐標;

(2)求拋物線的解析式;

(3)點M是線段AB上的一個動點(不與A、B兩點重合),過點MMNBC,交AC于點N,連接CM,在M點運動時,CMN的面積是否存在最大值?若存在,求出CMN面積最大時點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某店只銷售某種進價為40/kg的產(chǎn)品,已知該店按60kg出售時,每天可售出100kg,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低1元,則每天的銷售量可增加10kg.

(1)若單價降低2元,則每天的銷售量是_____千克,每天的利潤為_____元;若單價降低x元,則每天的銷售量是_____千克,每天的利潤為______元;(用含x的代數(shù)式表示)

(2)若該店銷售這種產(chǎn)品計劃每天獲利2240元,單價應(yīng)降價多少元?

(3)當單價降低多少元時,該店每天的利潤最大,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD的對角線、交于點,順次聯(lián)結(jié)ABCD各邊中點得到的一個新的四邊形,如果添加下列四個條件中的一個條件:①;②;③;④,可以使這個新的四邊形成為矩形,那么這樣的條件個數(shù)是()

A. 1個;B. 2個;

C. 3個;D. 4個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某通訊運營商的手機上網(wǎng)流量資費標準推出了三種優(yōu)惠方案:

方案A:按流量計費,0.1元/M;

方案B:20元流量套餐包月,包含500M流量,如果超過500M,超過部分另外計費(見圖象),如果用到1000M時,超過1000M的流量不再收費;

方案C:120元包月,無限制使用.

x表示每月上網(wǎng)流量(單位:M),y表示每月的流量費用(單位:元),方案B和方案C對應(yīng)的y關(guān)于x的函數(shù)圖象如圖所示,請解決以下問題:

(1)寫出方案A的函數(shù)解析式,并在圖中畫出其圖象;

(2)直接寫出方案B的函數(shù)解析式;

(3)若甲乙兩人每月使用流量分別在300600M,8001200M之間,請你分別給出甲乙二人經(jīng)濟合理的選擇方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O的半徑為4,BO外一點,連接OB,且OB=6,過點BO的切線BD,切點為D,延長BOO于點A,過點A作切線BD的垂線,垂足為C

1)求證:AD平分BAC;

2)求AC的長.

查看答案和解析>>

同步練習冊答案