【題目】如圖,甲樓樓高米,乙樓座落在甲樓的正北面,已知當(dāng)?shù)囟林形?/span>時(shí)太陽(yáng)光線與水平面的夾角為,此時(shí)求:

①如果兩樓相距米,那么甲樓的影子落在乙樓上有多高?________

②如果甲樓的影子剛好不落在乙樓上,那么兩樓的距離應(yīng)當(dāng)是________米.

【答案】(16)米 16.

【解析】

設(shè)CE⊥AB于點(diǎn)E,那么在Rt△AEC中,∠AEC=90°,∠ACE=30°,解直角三角形AEC可以求得AE的長(zhǎng),求得BE=AB-AE即可解題;
要使甲樓的影子剛好不落在乙樓上,則使得兩樓距離=AB即可.

設(shè)冬天太陽(yáng)最低時(shí),甲樓最高處A點(diǎn)的影子落在乙樓的C,那么圖中CD的長(zhǎng)度就是甲樓的影子在乙樓上的高度,設(shè)CE⊥AB于點(diǎn)E,

那么在Rt△AEC,∠AEC=90°,∠ACE=30°,EC=20

=tan∠ACE,

∴AE=ECtan∠ACE=20tan30°=20×= (),

CD=EB=ABAE=16 ();

設(shè)點(diǎn)A的影子落到地面上某一點(diǎn)F,則在Rt△ABF,∠AFB=30°,AB=16米,

所以BF=ABcot∠AFB=16().

所以要使甲樓的影子不影響乙樓,那么乙樓距離甲樓至少要16.

故答案為①(16)米;②16.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖 1,在ABC 中,ACB90°,BCAC,點(diǎn) D AB 上,DEAB BC E,點(diǎn) F AE 的中點(diǎn)

1 寫出線段 FD 與線段 FC 的關(guān)系并證明;

2 如圖 2,將BDE 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn)αα90°),其它條件不變,線段 FD 與線段 FC 的關(guān)系是否變化,寫出你的結(jié)論并證明;

3 BDE 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn)一周,如果 BC4BE2,直接寫出線段 BF 的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某無(wú)人機(jī)于空中A處探測(cè)到目標(biāo)B、D的俯角分別是30°60°,此時(shí)無(wú)人機(jī)的飛行高度AC60m.隨后無(wú)人機(jī)從A處繼續(xù)水平飛行30m到達(dá)A′處.

(1)AB之間的距離:

(2)求從無(wú)人機(jī)A上看目標(biāo)D的俯角的正切值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形中,,,的中點(diǎn),以點(diǎn)為圓心、長(zhǎng)為半徑作圓,恰好點(diǎn)上,連接,若,下列說(shuō)法中不正確的是( )

A. D是劣弧BE的中點(diǎn) B. CD是⊙O的切線 C. AE//OD D. ∠DOB=∠EAD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,內(nèi)接于,是直徑,過(guò)點(diǎn)的切線交的延長(zhǎng)線于,如果,,則________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,測(cè)量隊(duì)為了測(cè)量某地區(qū)山頂的海拔高度,選點(diǎn)作為觀測(cè)點(diǎn),從點(diǎn)測(cè)量山頂的仰角(視線在水平線上方,與水平線所夾的角)為,在比例尺為的該地區(qū)等高線地形圖上,量得這兩點(diǎn)的圖上距離為厘米,則山頂的海拔高度為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某種高新技術(shù)設(shè)備的生產(chǎn)成本不高于50萬(wàn)元/套,售價(jià)不低于90萬(wàn)元/套.已知這種設(shè)備的月產(chǎn)量x()與每套的售價(jià)y1(萬(wàn)元)之間滿足關(guān)系式y1=170-2x,月產(chǎn)量x()與生產(chǎn)總成本y2(萬(wàn)元)存在如圖9所示的函數(shù)關(guān)系.

(1)直接寫出y2x之間的函數(shù)關(guān)系式,并求月產(chǎn)量x的取值范圍;

(2)當(dāng)月產(chǎn)量x()為多少時(shí),這種設(shè)備的利潤(rùn)W(萬(wàn)元)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)驗(yàn)探究:

有A,B兩個(gè)不透明的布袋,A布袋中有兩個(gè)完全相同的小球,分別標(biāo)有數(shù)字1和2.B布袋中有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字-1,-2和-3.小明從A布袋中隨機(jī)取出一個(gè)小球,記錄其標(biāo)有的數(shù)字為x,再?gòu)腂布袋中隨機(jī)取出一個(gè)小球,記錄其標(biāo)有的數(shù)字為y,這樣就確定點(diǎn)的一個(gè)坐標(biāo)為

(1)用列表或畫樹(shù)狀圖的方法寫出點(diǎn)Q的所有可能坐標(biāo);

(2)求點(diǎn)Q落在直線上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形 ABCD 是正方形,點(diǎn) E BC邊上任意一點(diǎn), AEF 90°,且EF 交正方形外角的平分線 CF 于點(diǎn) F.求證:AE=EF

查看答案和解析>>

同步練習(xí)冊(cè)答案