兩個反比例函數(shù)y=
4
x
,y=-
8
x
的圖象在第一象限,第二象限如圖,點P1、P2、P3…P2010y=
4
x
的圖象上,它們的橫坐標分別是有這樣規(guī)律的一行數(shù)列1,3,5,7,9,11,…,過點P1、P2、P3、…、P2010分別作x軸的平行線,與y=-
8
x
的圖象交點依次是Q1、Q2、Q3、…、Q2010,則點Q2010的橫坐標是
-8038
-8038
分析:根據(jù)P2010和Q2010的縱坐標相同找出排列規(guī)律,代入反比例函數(shù)的解析式即可.
解答:解:根據(jù)題意,因為P2010Q2010∥X軸,所以P2010和Q2010的縱坐標相同.
根據(jù)數(shù)列1,3,5,7,9,11,…,的排列規(guī)律,得第2010個數(shù)為2×2010-1=4019,
代入y=
4
x
得,y=
4
4019
,
代入y=-
8
x
,得
4
4019
=-
8
x
,x=-8038.
故答案為:-8038.
點評:考查了反比例函數(shù)圖象上點的坐標特征,此題將規(guī)律探索和求點的坐標結合起來,而且解答時要抓住問題的關鍵:兩反比例函數(shù)中,Pn和Qn縱坐標相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,兩個反比例函數(shù)y=
k1
x
y=
k2
x
(其中k1>k2>0)在第一象限內(nèi)的圖象依次是C1和C2,設點P在C1精英家教網(wǎng),PC⊥x軸于點C,交C2于點A,PD⊥y軸于點D,交C2于點B,下列說法正確的是( 。
①△ODB與△OCA的面積相等;
②四邊形PAOB的面積等于k2-k1;③PA與PB始終相等;
④當點A是PC的中點時,點B一定是PD的中點.
A、①②B、①②④
C、①④D、①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,兩個反比例函數(shù)y=
8
x
y=
4
x
在第一象限內(nèi)的圖象依次是C1和C2,設點P在C1上,PC⊥x軸于點C,交C2于點A,PD⊥y軸于點D,交C2于點B,則四邊形PAOB的面積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,兩個反比例函數(shù)y=
k1
x
y=
k2
x
(其中k1>k2>0)在第一象限內(nèi)的圖象依次是C1精英家教網(wǎng)
C2,設點P在C1上,PC⊥x軸于點C,交C2于點A,PD⊥y軸于點D,交C2于點B,下列說法正確的是(  )  
①△ODB與△OCA的面積相等;②四邊形PAOB的面積等于k1-k2;
③PA與PB始終相等;        ④當點A是PC的三等分點時,點B一定是PD三等分點.
A、①②B、①②④
C、①④D、①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知反比例函數(shù)y=
k1
x
(k1>0)和y=
k2
x
(k2<0),點A在y軸的正半軸上,過點A作直線BC∥x軸,且分別與兩個反比例函數(shù)的圖象交于點B和C,連接OC、OB.若△BOC的面積為
5
2
,AC:AB=2:3,則k1•k2=
-6
-6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知兩個反比例函數(shù)y=
8
x
y=
4
x
在第一象限內(nèi)的圖象如圖所示,點P在y=
8
x
上,PC⊥x軸于點C,交y=
4
x
的圖象于點A,PD⊥y軸于點D,交y=
4
x
的圖象于點B,則陰影部分的面積為
4
4

查看答案和解析>>

同步練習冊答案