【題目】在一只不透明的口袋里裝有只有顏色不同的黑、白兩種顏色的球共20個(gè),某學(xué)習(xí)小組做摸球?qū)嶒?yàn),將球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,然后把它放回袋中,不斷重復(fù),下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):

1)上表中的a= ;

2摸到白球的概率的估計(jì)值是 (精確到0.1

3)試估算口袋中黑、白兩種顏色的球各有多少個(gè)?

【答案】(1) 0.58;(2) 0.6;(3)白球12(個(gè)),黑球8 (個(gè))

【解析】

1)利用頻率=頻數(shù)÷樣本容量直接求解即可;

2)根據(jù)統(tǒng)計(jì)數(shù)據(jù),當(dāng)n很大時(shí),摸到白球的頻率接近0.60;

3)根據(jù)利用頻率估計(jì)概率,可估計(jì)摸到白球的概率為0.60,然后利用概率公式計(jì)算白球的個(gè)數(shù).

(1)a= =0.58,

故答案為:0.58;

(2)隨著實(shí)驗(yàn)次數(shù)的增加“摸到白球”的頻率趨向于0.60,所以其概率的估計(jì)值是0.60,

故答案為:0.60;

(3)(2)摸到白球的概率估計(jì)值為0.60,

所以可估計(jì)口袋中白種顏色的球的個(gè)數(shù)=20×0.6=12(個(gè)),黑球2012=8(個(gè)).

答:黑球8個(gè),白球12個(gè).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】□ABCD中,∠A=60°,點(diǎn)EF分別在邊AD、DC上,DE=DF,且∠EBF=60°.若AE=2,FC=3,則EF的長(zhǎng)度為( 。

A. B. C. D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次數(shù)學(xué)測(cè)驗(yàn)后,王老師把某一小組10名同學(xué)的成績(jī)以平均成績(jī)?yōu)榛鶞?zhǔn),并以高于平均成績(jī)記為“+”,分別記為+10分,-5分,0分,+8分,-3分,+6分,-5分,-3分,+4分,-12分,通過(guò)計(jì)算知道這10名同學(xué)的平均成績(jī)是82.

1)這一小組成績(jī)最高分與最低分相差多少分?

2)如果成績(jī)不低于80分為優(yōu)秀,那么這10名同學(xué)在這次數(shù)學(xué)測(cè)驗(yàn)中優(yōu)秀率是百分之幾?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義一種對(duì)正整數(shù)n的“F”運(yùn)算:①當(dāng)n為奇數(shù)時(shí),Fn)=3n+1;②當(dāng)n為偶數(shù)時(shí),Fn(其中k是使Fn)為奇數(shù)的正整數(shù))……,兩種運(yùn)算交替重復(fù)進(jìn)行,例如,取n13,則:n24,則第100次“F”運(yùn)算的結(jié)果是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形ABCD中,AD//BC,AB=DC=5,AD=1,BC=9,點(diǎn)P為邊BC上一動(dòng)點(diǎn),作PHDC,垂足H在邊DC上,以點(diǎn)P為圓心PH為半徑畫圓,交射線PB于點(diǎn)E.

(1)當(dāng)圓P過(guò)點(diǎn)A時(shí),求圓P的半徑;

(2)分別聯(lián)結(jié)EHEA,當(dāng)ABE∽△CEH時(shí),以點(diǎn)B為圓心,r為半徑的圓B與圓P相交,試求圓B的半徑r的取值范圍;

(3)將劣弧沿直線EH翻折交BC于點(diǎn)F,試通過(guò)計(jì)算說(shuō)明線段EHEF的比值為定值,并求出此定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】老師在黑板上出了一道解方程的題:,小明馬上舉起了手,要求到黑板上去做,他是這樣做的:4(2x﹣1)=1﹣3(x+2),

8x﹣4=1﹣3x﹣6,

8x+3x=1﹣6+4,

11x=﹣1,

x=﹣

老師說(shuō):小明解一元一次方程的一般步驟都掌握了,但解題時(shí)有一步做錯(cuò)了.請(qǐng)你指出他錯(cuò)在第   步(填編號(hào)),然后再細(xì)心地解下面的方程,相信你一定能做對(duì)

(1)5(x+8)=6(2x﹣7)+5;

(2) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AEBD于點(diǎn)E,CF平分∠BCD,交EA的延長(zhǎng)線于點(diǎn)F,且BC=4,CD=2,給出下列結(jié)論:①∠BAE=CAD;②∠DBC=30°;AE=AF=,其中正確的是______.(填寫所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問題:將邊長(zhǎng)為的正三角形的三條邊分別等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形中邊長(zhǎng)為1的正三角形和邊長(zhǎng)為2的正三角形分別有多少個(gè)?

探究:要研究上面的問題,我們不妨先從最簡(jiǎn)單的情形入手,進(jìn)而找到一般性規(guī)律.

探究一:將邊長(zhǎng)為2的正三角形的三條邊分別二等分,連接各邊中點(diǎn),則該三角形中邊長(zhǎng)為1的正三角形和邊長(zhǎng)為2的正三角形分別有多少個(gè)?

如圖①,連接邊長(zhǎng)為2的正三角形三條邊的中點(diǎn),從上往下看:

邊長(zhǎng)為1的正三角形,第一層有1個(gè),第二層有3個(gè),共有個(gè);

邊長(zhǎng)為2的正三角形一共有1個(gè).

探究二:將邊長(zhǎng)為3的正三角形的三條邊分別三等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形中邊長(zhǎng)為1的正三角形和邊長(zhǎng)為2的正三角形分別有多少個(gè)?

如圖②,連接邊長(zhǎng)為3的正三角形三條邊的對(duì)應(yīng)三等分點(diǎn),從上往下看:邊長(zhǎng)為1的正三角形,第一層有1個(gè),第二層有3個(gè),第三層有5個(gè),共有個(gè);邊長(zhǎng)為2的正三角形共有個(gè).

探究三:將邊長(zhǎng)為4的正三角形的三條邊分別四等分(圖③),連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形中邊長(zhǎng)為1的正三角形和邊長(zhǎng)為2的正三角形分別有多少個(gè)?

(仿照上述方法,寫出探究過(guò)程)

結(jié)論:將邊長(zhǎng)為的正三角形的三條邊分別等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形中邊長(zhǎng)為1的正三角形和邊長(zhǎng)為2的正三角形分別有多少個(gè)?

(仿照上述方法,寫出探究過(guò)程)

應(yīng)用:將一個(gè)邊長(zhǎng)為25的正三角形的三條邊分別25等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形中邊長(zhǎng)為1的正三角形有______個(gè)和邊長(zhǎng)為2的正三角形有______個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】鹿山廣場(chǎng)元旦期間搞促銷活動(dòng),如圖.

1)小哲在促銷活動(dòng)時(shí)兩次購(gòu)物分別用了135元和481元.

若小哲購(gòu)物時(shí)沒有促銷活動(dòng),則他共需付多少錢?

若你需購(gòu)這些同樣的物品,請(qǐng)問還有更便宜的購(gòu)物方案嗎?若有,請(qǐng)說(shuō)出購(gòu)物方案,并算出共需付多少錢;若沒有,則說(shuō)明理由.

2)若小明購(gòu)了原價(jià)為a元的物品,小紅購(gòu)了原價(jià)為b元的物品,且ab,但最后小明所付的錢反而比小紅多.

你列舉一對(duì)a,b的值;

求符合條件的整數(shù)a,b共有幾對(duì)?(直接答案即可).

查看答案和解析>>

同步練習(xí)冊(cè)答案