如圖,是由四個直角邊分別為3和4全等的直角三角形拼成的“趙爽弦圖”,那么陰影部分面積為      
1

試題分析:求出陰影部分的正方形的邊長,即可得到面積.
解:∵四個全等的直角三角形的直角邊分別是3和4,
∴陰影部分的正方形的邊長為4﹣3=1,
∴陰影部分面積為1×1=1.
故答案為1.
點評:本題考查了“趙爽弦圖”,正方形的面積,熟悉“趙爽弦圖”中小正方形的邊長等于四個全等的直角三角形中兩直角邊的差是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

通過類比聯(lián)想、引申拓展研究典型題目,可達到解一題知一類的目的。下面是一個案例,請補充完整。

原題:如圖1,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說明理由。
(1)思路梳理
∵AB=CD,
∴把△ABE繞點A逆時針旋轉90°至△ADG,可使AB與AD重合。
∵∠ADC=∠B=90°,
∴∠FDG=180°,點F、D、G共線。
根據(jù)    ,易證△AFG≌    ,得EF=BE+DF。
(2)類比引申
如圖2,四邊形ABCD中,AB=AD,∠BAD=90°,點E、F分別在邊BC、CD上,∠EAF=45°。若∠B、∠D都不是直角,則當∠B與∠D滿足等量關系    時,仍有EF=BE+DF。
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點D、E均在邊BC上,且∠DAE=45°。猜想BD、DE、EC應滿足的等量關系,并寫出推理過程。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,在正方形ABCD中,點G是邊BC上任意一點,DE⊥AG,垂足為E,延長DE交AB于點F.在線段AG上取點H,使得AG=DE+HG,連接BH.求證:∠ABH=∠CDE.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知四邊形ABCD是平行四邊形,P、Q是對角線BD上的兩個點,且AP∥QC.求證:BP=DQ.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,梯形ABCD中,AD∥BC,AB∥DE,∠DEC=∠C,求證:梯形ABCD是等腰梯形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,順次連結四邊形ABCD四邊的中點E、F、G、H,則四邊形EFGH的形狀一定是    

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平行四邊形ABCD中,已知EF :FC =" 1" :4.

(1)求ED :BC的值;
(2)若AD=8,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在四邊形中,,,已知四邊形的周長為32,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖已知四邊形ABCD是平行四邊形,AC與BD相交于O點,且BC⊥AC,AB=8,∠ABC=30°,

(1)求AD和BD的長;
(2)求平行四邊形ABCD的面積.

查看答案和解析>>

同步練習冊答案