【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CE=2DE,將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF,下列結(jié)論:①△ABG≌△AFG;BG=GC;③∠EAG=45°;AGCF;SECG:SAEG=2:5,其中正確結(jié)論的個(gè)數(shù)是( 。

A. 2 B. 3 C. 4 D. 5

【答案】D

【解析】分析:(1)HL證明RtABGRtAFG;(2)設(shè)BGFGx,在直角△ECG中,根據(jù)勾股定理列方程求解;(3)由∠BAG=∠FAG,∠DAE=∠FAE,可求;(4)由∠GFC=∠GCF和∠AGB=∠AGF,∠AGB+∠AGF=∠GFC+∠GCF=2∠GCF,即可求證;(5)由三角形的面積公式分別求出這兩個(gè)三角形的面積.

詳解:①正確.理由:

ABADAFAGAG,∠B=∠AFG=90°,

RtABGRtAFG(HL);

②正確.理由:

EFDECD=2,

設(shè)BGFGx,則CG=6﹣x

在直角△ECG中,根據(jù)勾股定理,得(6﹣x)2+42=(x+2)2

解得x=3.∴BG=3=6﹣3=CG;

③正確.理由:

∵∠BAG=∠FAG,∠DAE=∠FAE,∠BAD=90°,

∴∠EAG=45°;

④正確.理由:

CGBGBGGF,∴CGGF

∴△FGC是等腰三角形,∠GFC=∠GCF

又∵RtABGRtAFG

∴∠AGB=∠AGF,

AGB+∠AGF=∠GFC+∠GCF=2∠GCF

∴∠AGB=∠AGF=∠GFC=∠GCF,∴AGCF

⑤正確.理由:

SECGGC·CE×3×4=6,SAEGAF·EG×6×5=15,

SECG:SAEG=2:5.

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有理數(shù)數(shù)ab在軸上的表示如圖所示,則下列結(jié)論中:①ab0,②a+b0,③ab0,④a,⑤﹣a>﹣b,正確的有(

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形ABCD,過(guò)DBD的垂線,與BC延長(zhǎng)線交于E點(diǎn),FBE的中點(diǎn),連接DF,已知DF=4,設(shè)AB=xAD=y,求代數(shù)式x2+y42的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在 A 處觀察 C 測(cè)得仰角∠CAD=31°,且 A、B 的水平距離 AE=800 米,斜坡 AB 的坡度i 1: 2 ,索道 BC 的坡度i 2 : 3 ,CD⊥AD 于 D,BF⊥CD 于 F,則索道BC 的長(zhǎng)大約是( )

(參考數(shù)據(jù):tan31°≈0. cos31°≈0.9,≈3.6)

A. 1400 B. 1440 C. 1500 D. 1540

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道,任意一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:n=p×qp,q是正整數(shù),且pq,在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對(duì)值最小,我們就稱p×q是n的最佳分解,并規(guī)定:Fn=,例如12可以分解成1×12,2×6或3×4,因?yàn)?2-16-24-3,所有3×4是最佳分解,所以F12=.

1如果一個(gè)正整數(shù)a是另外一個(gè)正整數(shù)b的平方,我們稱正整數(shù)a是完全平方數(shù),求證:對(duì)任意一個(gè)完全平方數(shù)m,總有Fm=1.

2如果一個(gè)兩位正整數(shù)t,t=10x+y1xy9,x,y為自然數(shù),交換其個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來(lái)的兩位正整數(shù)所得的差為18,那么我們稱這個(gè)數(shù)t為吉祥數(shù),求所有吉祥數(shù)中Ft的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC和△BEC均為等腰直角三角形,且∠ACB=BEC=90°,點(diǎn)P為線段BE延長(zhǎng)線上一點(diǎn),連接CP,以CP為直角邊向下作等腰直角△CPD,線段BECD相交于點(diǎn)F.

(1)求證:;

(2)連接BD,請(qǐng)你判斷ACBD有什么位置關(guān)系?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠B=90°AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0t≤15).過(guò)點(diǎn)DDFBC于點(diǎn)F,連接DE,EF

1)求證:AE=DF

2)四邊形AEFD能夠成為菱形嗎?如果能,求出t的值,如果不能,說(shuō)明理由;

3)在運(yùn)動(dòng)過(guò)程中,四邊形BEDF能否為正方形?若能,求出t的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】非負(fù)數(shù)滿足,設(shè)的最大值為,最小值為,則_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,海中有一個(gè)小島 A,該島四周 11 海里范圍內(nèi)有暗礁.有一貨輪在海面上由西向正東方向航行,到達(dá)B處時(shí)它在小島南偏西60°的方向上,再往正東方向行駛10海里后恰好到達(dá)小島南偏西45°方向上的點(diǎn)C處.問(wèn):如果貨輪繼續(xù)向正東方向航行,是否會(huì)有觸礁的危險(xiǎn)?(參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

同步練習(xí)冊(cè)答案