【題目】如圖,已知四邊形ABCD內(nèi)接于☉O,A是的中點(diǎn),AE⊥AC于A,與☉O及CB的延長(zhǎng)線交于點(diǎn)F、E,且=.

(1)求證:△ADC∽△EBA;

(2)如果AB=8,CD=5,求tan∠CAD的值.

【答案】(1)見解析;(2)

【解析】分析:(1)欲證ADC∽△EBA,只要證明兩個(gè)角對(duì)應(yīng)相等就可以.可以轉(zhuǎn)化為證明且=就可以;
(2)A的中點(diǎn),的中點(diǎn),則AC=AB=8,根據(jù)CAD∽△ABE得到∠CAD=AEC,求得AE,根據(jù)正切三角函數(shù)的定義就可以求出結(jié)論.

詳解:(1)證明:∵四邊形ABCD內(nèi)接于☉O,

∴∠CDA=ABE.

=,

∴∠DCA=BAE,

ADC∽△EBA.

(2)A的中點(diǎn),

=,

AB=AC=8.

ADC∽△EBA,

∴∠CAD=AEC,=,=,

AE=,

tanCAD=tanAEC===.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,APB=30°,圓心在PB上的O的半徑為1cm,OP=3cm,若O沿BP方向平移,當(dāng)O與PA相切時(shí),圓心O平移的距離為_____cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,若DFAC,ADFFDC=3:2,則BDF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)計(jì)劃根據(jù)學(xué)生的興趣愛好組建課外興趣小組,并隨機(jī)抽取了部分同學(xué)的興趣愛好進(jìn)行調(diào)查,將收集的數(shù)據(jù)整理并繪制成下列兩幅統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,完成下列問題:

學(xué)校這次調(diào)查共抽取了 名學(xué)生;

的值并補(bǔ)全條形統(tǒng)計(jì)圖;

在扇形統(tǒng)計(jì)圖中,圍棋所在扇形的圓心角度數(shù)為

設(shè)該校共有學(xué)生名,請(qǐng)你估計(jì)該校有多少名學(xué)生喜歡足球.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,對(duì)角線BD平分∠ABC,過(guò)點(diǎn)AAEBD,交CD的延長(zhǎng)線于點(diǎn)E,過(guò)點(diǎn)EEFBC,交BC延長(zhǎng)線于點(diǎn)F

1)求證:四邊形ABCD是菱形;

2)若∠ABC45°,BC2,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,DBC邊上一點(diǎn),∠B=30°DAB=45°.(1)求∠DAC的度數(shù);(2)請(qǐng)說(shuō)明:AB=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】春節(jié)期間,七(1)班的李平、王麗等同學(xué)隨家長(zhǎng)一同到某公園游玩,下面是購(gòu)買門票時(shí),李平與他爸爸的對(duì)話(如圖),試根據(jù)圖中的信息,解答下列問題:

⑴李平他們一共去了幾個(gè)成人,幾個(gè)學(xué)生?

⑵請(qǐng)你幫助算一算,用哪種方式購(gòu)票更省錢?說(shuō)明理由.

⑶購(gòu)?fù)昶焙螅钇桨l(fā)現(xiàn)七⑵班的張明等8名同學(xué)和他們的12名家長(zhǎng)共20人也來(lái)購(gòu)票,請(qǐng)你為他們?cè)O(shè)計(jì)出最省的購(gòu)票方案,并求出此時(shí)的購(gòu)票費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在中給出4個(gè)論斷:①;②;③;④,;現(xiàn)將4個(gè)論斷分別粘貼在四個(gè)學(xué)生的后背上,進(jìn)行如下游戲:其中三個(gè)學(xué)生站在講臺(tái)的左邊,另一個(gè)學(xué)生站在講臺(tái)的右邊,要求以三個(gè)學(xué)生后背上的部分論斷作為題設(shè),另一個(gè)學(xué)生后背上的論斷作為結(jié)論,使之成為一個(gè)真命題或題目,這個(gè)游戲可進(jìn)行幾輪?并對(duì)其中的一種情況進(jìn)行證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在等腰梯形ABCD中,ADBC,AB=DC,點(diǎn)E為邊BC上一點(diǎn),且AE=DC.

1)求證:四邊形AECD是平行四邊形;

2)當(dāng)∠B=2DCA時(shí),求證四邊形AECD是菱形.

查看答案和解析>>

同步練習(xí)冊(cè)答案