【題目】如圖,點(diǎn)A,B在反比例函數(shù)的圖象上,點(diǎn)C,D在反比例函數(shù)的圖象上,AC//BD//y軸,已知點(diǎn)A,B的橫坐標(biāo)分別為1,2,△OAC與△ABD的面積之和為,則k的值為( )
A. 4 B. 3 C. 2 D.
【答案】B
【解析】
分析: 首先根據(jù)A,B兩點(diǎn)的橫坐標(biāo),求出A,B兩點(diǎn)的坐標(biāo),進(jìn)而根據(jù)AC//BD// y 軸,及反比例函數(shù)圖像上的點(diǎn)的坐標(biāo)特點(diǎn)得出C,D兩點(diǎn)的坐標(biāo),從而得出AC,BD的長(zhǎng),根據(jù)三角形的面積公式表示出S△OAC,S△ABD的面積,再根據(jù)△OAC與△ABD的面積之和為,列出方程,求解得出答案.
詳解: 把x=1代入得:y=1,
∴A(1,1),把x=2代入得:y=,
∴B(2, ),
∵AC//BD// y軸,
∴C(1,K),D(2,)
∴AC=k-1,BD=-,
∴S△OAC=(k-1)×1,
S△ABD= (-)×1,
又∵△OAC與△ABD的面積之和為,
∴(k-1)×1+ (-)×1=,解得:k=3;
故答案為B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為實(shí)現(xiàn)教育均衡發(fā)展,打造新優(yōu)質(zhì)學(xué)校,瑤海區(qū)計(jì)劃對(duì)A、B兩類薄弱學(xué)校全部進(jìn)行改造,根據(jù)預(yù)算,共需資金1575萬(wàn)元.改造一所A類學(xué)校和兩所B類學(xué)校共需資金230萬(wàn)元;改造兩所A類學(xué)校和一所B類學(xué)校共需資金205萬(wàn)元,求改造一所A類學(xué)校和一所B類學(xué)校所需的資金分別是多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,請(qǐng)描出A(-3,-2),B(2,-2),C(3,1),D(-2,1)四個(gè)點(diǎn)。
(1)線段AB、CD有什么關(guān)系?
(2)順次連接A、B、C、D四點(diǎn)組成的圖形是什么圖形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小張騎車(chē)往返于甲、乙兩地,距甲地的路程y(千米)與時(shí)間x(時(shí))的函數(shù)圖象如圖所示.
(1)小張?jiān)诼飞贤A?/span> 小時(shí),他從乙地返回時(shí)騎車(chē)的速度為 千米/時(shí);
(2)小王與小張同時(shí)出發(fā),按相同路線勻速前往乙地,距甲地的路程y(千米)與時(shí)間x(時(shí))的函數(shù)關(guān)系式為y=10x+10.請(qǐng)作出此函數(shù)圖象,并利用圖象回答:小王與小張?jiān)谕局泄蚕嘤?/span> 次;
(3)請(qǐng)你計(jì)算第三次相遇的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)5a2b÷×2ab2;
(2)[(x+2y)2-(x+y)(x-y)-5y2]÷2x;
(3)(-3.6×1010)÷(-2×102)2;
(4)(2a-b+3)(2a-3+b).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】去學(xué)校食堂就餐,經(jīng)常會(huì)在一個(gè)買(mǎi)菜窗口前等待. 經(jīng)調(diào)查發(fā)現(xiàn),同學(xué)的舒適度指數(shù)y與等待時(shí)間x(分)之間存在如下的關(guān)系:y=,求:
(1)若等待時(shí)間x=5分鐘時(shí),求舒適度y的值;
(2)舒適度指數(shù)不低于10時(shí),同學(xué)才會(huì)感到舒適.函數(shù)y=(x>0)的圖象如圖,請(qǐng)根據(jù)圖象說(shuō)明,作為食堂的管理員,讓每個(gè)在窗口買(mǎi)菜的同學(xué)最多等待多少時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,下列條件中,不能說(shuō)明AB⊥CD的是( )
A. ∠AOD=90°
B. ∠AOC=∠BOC
C. ∠BOC+∠BOD=180°
D. ∠AOC+∠BOD=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為預(yù)防甲型H1N1流感,某校對(duì)教室噴灑藥物進(jìn)行消毒.已知噴灑藥物時(shí)每立方米空氣中的含藥量y(毫克)與時(shí)間x(分鐘)成正比,藥物噴灑完后,y與x成反比例(如圖所示).現(xiàn)測(cè)得10分鐘噴灑完后,空氣中每立方米的含藥量為8毫克.
(1)求噴灑藥物時(shí)和噴灑完后,y關(guān)于x的函數(shù)關(guān)系式;
(2)若空氣中每立方米的含藥量低于2毫克學(xué)生方可進(jìn)教室,問(wèn)消毒開(kāi)始后至少要經(jīng)過(guò)多少分鐘,學(xué)生才能回到教室?
(3)如果空氣中每立方米的含藥量不低于4毫克,且持續(xù)時(shí)間不低于10分鐘時(shí),才能殺滅流感病毒,那么此次消毒是否有效?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形紙片ABCD中,EF∥AD,M,N是線段EF的六等分點(diǎn),若把該正方形紙片卷成一個(gè)圓柱,使點(diǎn)A與點(diǎn)D重合,此時(shí),底面圓的直徑為10cm,則圓柱上M,N兩點(diǎn)間的距離是cm.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com