精英家教網(wǎng)如圖,在矩形ABCD中,AB=4,BC=7,P是BC邊上與B點不重合的動點,過點P的直線交CD的延長線于R,交AD于Q(Q與D不重合),且∠RPC=45°,設(shè)BP=x,梯形ABPQ的面積為y,求y與x之間的函數(shù)關(guān)系,并求自變量x的取值范圍.
分析:由梯形面積公式S=
1
2
(AQ+BP)×AB
,設(shè)BP=x,AB=4,需求得AQ,又∠RPC=45,AQ=AD-QD,QD=RD=RC-CD=PC-CD,由此得出y與x之間的函數(shù)關(guān)系;對于自變量x的取值范圍,求臨界條件Q與D重合時,BP=x=3,又Q與D不重合,故x<3.
解答:解:矩形ABCD中
AD=BC=7,AB=DC=4,∠C=90°
∵∠RPC=45°
∴∠R=45°=∠RPC
∴PC=RC
∵BP=x
∴PC=7-x
∵AD∥BC
QD
PC
=
RD
RC

∴QD=RD=RC-DC=7-x-4=3-x
∴AQ=AD-QD=7-(3-x)=4+x
∵S梯形ABPQ=
1
2
(AQ+BP)•AB
∴y=4x+8
當Q與D重合時,PC=DC=4,BP=3
∵P與B不重合,Q與D不重合
∴自變量x的取值范圍是0<x<3.
點評:本題考查了動點變化時,面積隨動點的函數(shù)關(guān)系以及自變量取值范圍的判定.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4cm,BC=8cm,點P從點A出發(fā)以1cm/s的速度向點B運動,點Q從點B出發(fā)以2cm/s的速度向點C運動,設(shè)經(jīng)過的時間為xs,△PBQ的面積為ycm2,則下列圖象能反映y與x之間的函數(shù)關(guān)系的是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,點O在對角線AC上,以O(shè)A的長為半徑的⊙O與AD、AC分別交于點E、F,且∠ACB=∠DCE精英家教網(wǎng)
(1)判斷直線CE與⊙O的位置關(guān)系,并說明理由;
(2)若AB=
2
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖①,在矩形 ABCD中,AB=30cm,BC=60cm.點P從點A出發(fā),沿A→B→C→D路線向點D勻速運動,到達點D后停止;點Q從點D出發(fā),沿 D→C→B→A路線向點A勻速運動,到達點A后停止.若點P、Q同時出發(fā),在運動過程中,Q點停留了1s,圖②是P、Q兩點在折線AB-BC-CD上相距的路程S(cm)與時間t(s)之間的函數(shù)關(guān)系圖象.
(1)請解釋圖中點H的實際意義?
(2)求P、Q兩點的運動速度;
(3)將圖②補充完整;
(4)當時間t為何值時,△PCQ為等腰三角形?請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,對角線AC,BD相交于點O,∠AOB=60°,AB=6,則AD=( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,AB=4,BC=6,E為線段BC上的動點(不與B、C重合).連接DE,作EF⊥DE,EF與AB交于點F,設(shè)CE=x,BF=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)x為何值時,y的值最大,最大值是多少?
(3)若設(shè)線段AB的長為m,上述其它條件不變,m為何值時,函數(shù)y的最大值等于3?

查看答案和解析>>

同步練習冊答案