【題目】如圖,在△ABC中,∠B=58°,AD平分∠CAB,交BC于D,E為AC邊上一點(diǎn),連結(jié)DE,∠EAD=∠EDA,EF⊥BC于點(diǎn)F.
(1)試說明AB∥DE.
(2)求∠FED的度數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司開發(fā)出一款新的節(jié)能產(chǎn)品,該產(chǎn)品的成本價(jià)為6元/件,該產(chǎn)品在正式投放市場前通過代銷點(diǎn)進(jìn)行了為期一個月(30天)的試營銷,售價(jià)為8元/件,工作人員對銷售情況進(jìn)行了跟蹤記錄,并將記錄情況繪成圖象,圖中的折線ODE表示日銷售量y(件)與銷售時間x(天)之間的函數(shù)關(guān)系,已知線段DE表示的函數(shù)關(guān)系中,時間每增加1天,日銷售量減少5件.
(1)第24天的日銷售量是件,日銷售利潤是元.
(2)求y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)日銷售利潤不低于640元的天數(shù)共有多少天?試銷售期間,日銷售最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,數(shù)軸上的點(diǎn)A,B,C,D表示的數(shù)分別為:-1.5,-3,2,3.5.
(1)將A,B,C,D表示的數(shù)按從小到大的順序用“<”號連接起來;
(2)若將原點(diǎn)改在C點(diǎn),其余各點(diǎn)所對應(yīng)的數(shù)分別為多少?將這些數(shù)按從小到大的順序用“<”連接起來;
(3)改變原點(diǎn)位置后,點(diǎn)A,B,C,D所表示的數(shù)大小順序改變了嗎?這說明了數(shù)軸的什么性質(zhì)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器超市銷售每臺進(jìn)價(jià)分別為200元,170元的A,B兩種型號的電風(fēng)扇,表中是近兩周的銷售情況:
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 5臺 | 1800元 |
第二周 | 4臺 | 10臺 | 3100元 |
(進(jìn)價(jià)、售價(jià)均保持不變,利潤=銷售收入-進(jìn)貨成本)
(1)求A,B兩種型號的電風(fēng)扇的銷售單價(jià).
(2)若超市準(zhǔn)備用不多于5400元的金額再采購這兩種型號的電風(fēng)扇共30臺,則A種型號的電風(fēng)扇最多能采購多少臺?
(3)在(2)的條件下,超市銷售完這30臺電風(fēng)扇能否實(shí)現(xiàn)利潤為1400元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC沿射線BC方向平移3cm得到△DEF.若△ABC的周長為14cm,則四邊形ABFD的周長為( 。
A. 14cm B. 17cm C. 20cm D. 23cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,點(diǎn)P從點(diǎn)C開始沿射線CA方向以1cm/s的速度運(yùn)動;同時,點(diǎn)Q也從點(diǎn)C開始沿射線CB方向以3cm/s的速度運(yùn)動.
(1)幾秒后△PCQ的面積為3cm2?此時PQ的長是多少?(結(jié)果用最簡二次根式表示)
(2)幾秒后以A、B、P、Q為頂點(diǎn)的四邊形的面積為22cm2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織學(xué)生乘汽車去自然保護(hù)區(qū)野營。汽車先以60km/h的速度在平路上行駛,后又以30km/h的速度爬坡到目的地,共有了6.5 h ;返回時, 汽車以40km/h的速度下坡,又以50km/h的速度在平路上行駛,共有用了6 h. 學(xué)校距自然保護(hù)區(qū)有多遠(yuǎn) ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明:已知,如圖,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD,求證:∠EGF=90°
證明:∵HG∥AB(已知)
∴∠1=∠3
又∵HG∥CD(已知)
∴∠2=∠4
∵AB∥CD(已知)
∴∠BEF+ =180°
又∵EG平分∠BEF(已知)
∴∠1=∠
又∵FG平分∠EFD(已知)
∴∠2=∠
∴∠1+∠2=( )
∴∠1+∠2=90°
∴∠3+∠4=90° 即∠EGF=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一塊長和寬分別為60厘米和40厘米的長方形鐵皮,要在它的四角截去四個相等的小正方形,折成一個無蓋的長方體水槽,使它的底面積為800平方厘米.求截去正方形的邊長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com