【題目】下列命題中,假命題的是( )
A.在△ABC中,若∠B+∠C=∠A,則△ABC是直角三角形
B.在△ABC中,若a2=(b+c)(b﹣c),則△ABC是直角三角形
C.在△ABC中,若∠A:∠B:∠C=1:2:3,則△ABC是直角三角形
D.在△ABC中,若a=32,b=42,c=52,則△ABC是直角三角形
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,BA=BC,D在邊CB上,且DB=DA=AC
(1)填空:如圖1,∠B= °,∠C= °;
(2)如圖2,若M為線段BC上的點,過M作MH⊥AD,交AD的延長線于點H,分別交直線AB、AC與點N、E.
①求證:△ANE是等腰三角形;
②線段BN、CE、CD之間的數(shù)量關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形中,為正方形的外角的角平分線,點在線段上,過點作于點,連接,過點作于點,交射線于點.
()如圖1,若點與點重合.
①依題意補全圖1.
②判斷與的數(shù)量關(guān)系并加以證明.
()如圖2,若點恰好在線段上,正方形的邊長為,請寫出求長的思路(可以不寫出計算結(jié)果).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某長途汽車客運公司規(guī)定旅客可以免費攜帶一定質(zhì)量的行李,當行李的質(zhì)量超過規(guī)定時,需付的行李費y(元)與行李質(zhì)量x(kg)之間的函數(shù)表達式為,這個函數(shù)的圖像如圖所示,求:
(1)k和b的值;
(2)旅客最多可免費攜帶行李的質(zhì)量;
(3)行李費為4~15元時,旅客攜帶行李的質(zhì)量為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩家快遞公司攬件員(攬收快件的員工)的日工資方案如下:
甲公司為“基本工資+攬件提成”,其中基本工資為70元/日,每攬收一件提成2元;
乙公司無基本工資,僅以攬件提成計算工資.若當日攬件數(shù)不超過40,每件提成4元;若當日攪件數(shù)超過40,超過部分每件多提成2元.
如圖是今年四月份甲公司攬件員人均攬件數(shù)和乙公司攪件員人均攬件數(shù)的條形統(tǒng)計圖:
(1)現(xiàn)從今年四月份的30天中隨機抽取1天,求這一天甲公司攬件員人均攬件數(shù)超過40(不含40)的概率;
(2)根據(jù)以上信息,以今年四月份的數(shù)據(jù)為依據(jù),并將各公司攬件員的人均攬件數(shù)視為該公司各攬件員的
攬件數(shù),解決以下問題:
①估計甲公司各攬件員的日平均件數(shù);
②小明擬到甲、乙兩家公司中的一家應(yīng)聘攬件員,如果僅從工資收入的角度考慮,請利用所學的統(tǒng)計知識幫他選擇,井說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某開發(fā)區(qū)有一塊四邊形的空地ABCD,現(xiàn)計劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,則要投入_____元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,CD為AB邊上的高,AD=8,CD=4,BD=3.動點P從點A出發(fā),沿射線AB運動,速度為1個單位/秒,運動時間為t秒.
(1)當t為何值時,△PDC≌△BDC;
(2)當t為何值時,△PBC是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場老板對一種新上市商品的銷售情況進行記錄,已知這種商品進價為每件40元,經(jīng)過記錄分析發(fā)現(xiàn),當銷售單價在40元至90元之間(含40元和90元)時,每月的銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似地看作一次函數(shù),其圖象如圖所示.
(1)求y與x的函數(shù)關(guān)系式.
(2)設(shè)商場老板每月獲得的利潤為P(元),求P與x之間的函數(shù)關(guān)系式;
(3)如果想要每月獲得2400元的利潤,那么銷售單價應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,每個小方格的邊長為1,已知點A(2,2),把點A先向左平移4個單位,再向下平移2個單位到達點B;把點B先向右平移2個單位,再向下平移4個單位到達點C.
(1)在圖中畫出△ABC,并直接寫出B,C兩點的坐標:B( ),C( ).
(2)求△ABC的面積.
(3)判斷△ABC的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com