【題目】如圖,在△ABC中,∠ACB=90°,CD⊥AB垂足為D,AE平分∠CAB交CD于點F,交BC于點E,EH⊥AB,垂足為H,連接FH.
(1)求證:CF=CE
(2)試判斷四邊形CFHE的形狀,并說明理由.
【答案】(1)證明見解析;(2)四邊形CFHE是菱形.
【解析】
(1)如圖,先由直角三角形的性質證∠3=∠5,再由對頂角相等和等量代換得∠4=∠5,從而得到CF=CE;
(2)由角平分線的性質定理得CE=EH,又因為CF=CE,所以CF=EH,再證CF∥EH,得平行四邊形CFHE,又因為CF=CE,四邊形CFHE是菱形.
(1)證明:如圖
∵∠ACB=90°,CD⊥AB垂足為D,
∴∠1+∠5=90°,∠2+∠3=90°,
又∵∠AE平分∠CAB,
∴∠1=∠2,
∴∠3=∠5,
∵∠3=∠4,
∴∠4=∠5,
∴CF=CE
(2)四邊形CFHE是菱形
理由:∵AE平分∠CAB,CE⊥AC,EH⊥AB,
∴CE=EH,
由(1)CF=CE,
∴CF=EH,
∵CD⊥AB,EH⊥AB,
∴∠CDB=90°,∠EHB=90°,
∴∠CDB=∠EB,
∴CD∥EH,即CF∥EH,
∴四邊形CFHE是平行四邊形.
∵CF=CE,
∴四邊形CFHE是菱形.
科目:初中數學 來源: 題型:
【題目】如圖,M、N是正方形ABCD的邊CD上的兩個動點,滿足AM=BN,連接AC交BN于點E,連接DE交AM于點F,連接CF,若正方形的邊長為4,則線段CF的最小值是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下表是在汛期中防汛指揮部對某河流做的一星期的水位測量(單位:)
(注:此河流的警戒水位為,“+”表示比河流的警戒水位高,“-”表示比河流的警戒水位低)
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
水位記錄 | +2.3 | +0.7 | -5.0 | -1.5 | +3.6 | +1.0 | -2.5 |
(1)本周河流水位最高的一天是______,最低的一天是______,這兩天的實際水位分別是_______;
(2)完成下列本周的水位變化表(單位:),(已知上周末河流的水位比警戒水位低.注:規(guī)定水位比前一天上升用“+”,比前一天下降用“-”,不升不降用“0”)
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
水位變化 |
(3)與上周末相比,本周末河流水位上升了還是下降了?變化了多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=3,BC=2,沿對角線AC剪開(如圖①);固定△ADC,把△ABC沿AD方向平移(如圖②),當兩個三角形重疊部分的面積最大時,移動的距離AA′等于( )
A. 1 B. 1.5 C. 2 D. 0.8或1.2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(0,2),動點B、C從原點O同時出發(fā),分別以每秒1個單位和每秒2個單位長度的速度沿x軸正方向運動,以點A為圓心,OB的長為半徑畫圓;以BC為一邊,在x軸上方作等邊△BCD.設運動的時間為t秒,當⊙A與△BCD的邊BD所在直線相切時,t的值為( )
A. B. C. 4+6 D. 4-6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料解決問題:兩個多位數整數,若它們各數位上的數字之和相等,則稱這兩個多位數互為“調和數”,例如37和82,它們各數位上的數字之和分別為3+7和8+2,顯然3+7=8+2=10故37和82互為“調和數”.
(1)下列說法錯誤的是
A.123和51互為調和數” ; B.345和513互為“調和數; C.2018和8120互為“調和數”; D.兩位數和互為“調和數”
(2)若A、B是兩個不等的兩位數,A=,B=,A和B互為“調和數”,且A與B之和是B與A之差的3倍,求證:y=-x+9.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學計劃購買A型和B型課桌凳共200套,經招標,購買一套A型課桌凳比購買一套B型課桌凳少用40元,,且購買4套A型和6套B型課桌凳共需1820元。
(1)求購買一套A型課桌凳和一套B型課桌凳各需多少元?
(2)學校根據實際情況,要求購買這兩種課桌凳總費用不能超過40880元,并且購買A型課桌凳的數量不能超過B型課桌凳的,求該校本次購買A型和B型課桌凳共有幾種方案?哪種方案的總費用最低?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形紙片ABCD中,∠B=∠D=90°,點E,F分別在邊BC,CD上,將AB,AD分別沿AE,AF折疊,點B,D恰好都和點G重合,∠EAF=45°.
(1)求證:四邊形ABCD是正方形;
(2)求證:三角形ECF的周長是四邊形ABCD周長的一半;
(3)若EC=FC=1,求AB的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在正方形ABCD中,點E,F分別在邊BC,CD上,且∠EAF=∠CEF=45°.
(1)將△ADF繞著點A順時針旋轉90°,得到△ABG(如圖①),求證:△AEG≌△AEF;
(2)若直線EF與AB,AD的延長線分別交于點M,N(如圖②),求證:EF2=ME2+NF2;
(3)將正方形改為長與寬不相等的矩形,若其余條件不變(如圖③),請你直接寫出線段EF,BE,DF之間的數量關系.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com