【題目】已知數(shù)軸上兩點A,B對應(yīng)的數(shù)分別為﹣4,8.
(1)如圖1,如果點P和點Q分別從點A,B同時出發(fā),沿數(shù)軸負方向運動,點P的運動速度為每秒2個單位,點Q的運動速度為每秒6個單位.
①A,B兩點之間的距離為 .
②當P,Q兩點相遇時,點P在數(shù)軸上對應(yīng)的數(shù)是 .
③求點P出發(fā)多少秒后,與點Q之間相距4個單位長度?
(3)如圖2,如果點P從點A出發(fā)沿數(shù)軸的正方向以每秒2個單位的速度運動,點Q從點B出發(fā)沿數(shù)軸的負方向以每秒6個單位的速度運動,點M從數(shù)軸原點O出發(fā)沿數(shù)軸的正方向以每秒1個單位的速度運動,若三個點同時出發(fā),經(jīng)過多少秒后有MP=MQ?
【答案】(1)①12;②﹣10;③點P出發(fā)2或4秒后,與點Q之間相距4個單位長度;(2)三個點同時出發(fā),經(jīng)過或秒后有MP=MQ.
【解析】
(1)①根據(jù)兩點間的距離公式即可求解;
②根據(jù)相遇時間=路程差÷速度差先求出時間,再根據(jù)路程=速度×?xí)r間求解即可;
③分兩種情況:P,Q兩點相遇前;P,Q兩點相遇后;進行討論即可求解;
(2)分兩種情況:M在P,Q兩點之間;P,Q兩點相遇;進行討論即可求解.
(1)①A,B兩點之間的距離為8﹣(﹣4)=12,
故答案為:12;
②12÷(6﹣2)=3(秒),
﹣4﹣2×3=﹣10,
故當P,Q兩點相遇時,點P在數(shù)軸上對應(yīng)的數(shù)是﹣10,
故答案為:-10;
③P,Q兩點相遇前,
(12﹣4)÷(6﹣2)=2(秒),
P,Q兩點相遇后,
(12+4)÷(6﹣2)=4(秒),
故點P出發(fā)2或4秒后,與點Q之間相距4個單位長度;
(2)設(shè)三個點同時出發(fā),經(jīng)過t秒后有MP=MQ,
M在P,Q兩點之間,
8﹣6t﹣t=t﹣(﹣4+2t),
解得t=;
P,Q兩點相遇,
2t+6t=12,
解得t=,
故若三個點同時出發(fā),經(jīng)過或秒后有MP=MQ.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題。
(1)問題發(fā)現(xiàn):如圖1,△ACB和△DCE均為等邊三角形,當△DCE旋轉(zhuǎn)至點A,D,E在同一直線上,連接BE,易證△BCE≌△ACD.則
①∠BEC=°;②線段AD、BE之間的數(shù)量關(guān)系是 .
(2)拓展研究:
如圖2,△ACB和△DCE均為等腰三角形,且∠ACB=∠DCE=90°,點A、D、E在同一直線上,若AE=15,DE=7,求AB的長度.
(3)探究發(fā)現(xiàn):
如圖3,P為等邊△ABC內(nèi)一點,且∠APC=150°,且∠APD=30°,AP=5,CP=4,DP=8,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是等邊三角形,在直線AC、直線BC上分別取點D和點且AD=CE,直線BD、AE相交于點F.
(1)如圖1所示,當點D、點E分別在線段CA、BC上時,求證:BD=AE;
(2)如圖2所示,當點D、點E分別在CA、BC的延長線時,求∠BFE的度數(shù);
(3)如圖3所示,在(2)的條件下,過點C作CM∥BD,交EF于點M,若DF:AF:AM=1:2:4,BC=12,求CE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列各組圖形中,由左邊變成右邊的圖形,分別進行了平移、旋轉(zhuǎn)、軸對稱、中心對稱等變換,其中進行平移變換的是________,進行旋轉(zhuǎn)變換的是________,進行軸對稱變換的是______,進行中心對稱變換的是______.(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司員工分別住在A、B、C三個住宅區(qū),A區(qū)有25人,B區(qū)有15人,C區(qū)有10人,三個區(qū)在一條直線上,位置如圖所示,公司的接送車打算在此間只設(shè)一個?奎c,為使所有員工步行到?奎c的路程總和最少,那么?奎c的位置應(yīng)設(shè)在( 。
A. A區(qū) B. B區(qū) C. A區(qū)或B區(qū) D. C區(qū)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,CO⊥AB于點O,CD是⊙O的切線,切點為D.連接BD,交OC于點E.
(1)求證:∠CDE=∠CED;
(2)若AB=13,BD=12,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列一元一次方程解應(yīng)用題:
某管道由甲、乙兩工程隊單獨施工分別需要30天、20天.
(1)如果兩隊從管道兩端同時施工,需要多少天完工?
(2)又知甲隊單獨施工每天需付200元施工費,乙隊單獨施工每天需付280元施工費,那么是由甲隊單獨施工,還是由乙隊單獨施工,還是由兩隊同時施工?請你按照少花錢多辦事的原則,設(shè)計一個方案,并通過計算說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線a,b,c,d,e,且∠1=∠2,∠3=∠4,則a與c平行嗎?為什么?
解:a與c平行;
理由:因為∠1=∠2 (_________________)
所以a//b (__________________________________________)
因為∠3=∠4 (_________________)
所以b//c (__________________________________________)
所以a//c (__________________________________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的AC邊在直線m上,∠ACB=80°,以C為圓心, BC長為半徑畫弧,交直線m于點D1、交BC于點E1 , 連接D1E1;又以D1為圓心, D1E1長為半徑畫弧,交直線m于點D2、交D1E1于點E2 , 連接D2E2;又以D2為圓心, D2E2長為半徑畫弧,交直線m于點D3、交D2E2于點E3 , 連接D3E3;如此依次下去,…,第n次時所得的∠EnDnDn﹣1= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com