精英家教網 > 初中數學 > 題目詳情

【題目】已知:如圖,在四邊形ABCD中,點G在邊BC的延長線上,CE平分∠BCD,CF平分∠GCD,EF∥BCCD于點O.

(1)求證:OE=OF;

(2)若點OCD的中點,求證:四邊形DECF是矩形.

【答案】證明見解析

【解析】試題分析:(1)由角平分線的定義及平行線的性質可證得∠DCE=∠FECEFC=∠DCF,則可求得OE=OC=OF;

2)利用(1)的結論,結合條件可證得四邊形DECF為平行四邊形再利用角平分線的定義可求得∠ECF為直角,則可證得四邊形DECF為矩形.

試題解析:(1CE平分BCDCF平分GCD,∴∠BCE=∠DCE,DCF=∠GCF

EFBC,∴∠BCE=∠FEC,EFC=∠GCF∴∠DCE=∠FEC,EFC=∠DCF,OE=OCOF=OC,OE=OF

2OCD的中點,OD=OCOE=OF四邊形DECF是平行四邊形

CE平分BCD、CF平分GCD∴∠DCE=BCD,DCF=DCG∴∠DCE+DCF=BCD+DCG=90°,ECF=90°,四邊形DECF是矩形.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】我們知道,對于一個圖形,通過兩種不同的方法計算它的面積,可以得到一個數學等式.例如圖可以得到.請解答下列問題:

1)寫出圖中所表示的數學等式;

2)利用(1)中所得到的結論,解決下面的問題:已知,,求的值;

3)小明同學打算用張邊長為的正方形,張邊長為的正方形,張相鄰兩邊長為分別為的長方形紙片拼出了一個面積為 長方形,那么他總共需要多少張紙片?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發(fā)向乙地,如圖,線段OA表示貨車離甲地距離y(千米)與時間x(小時)之間的函數關系;折線BCD表示轎車離甲地距離y(千米)與x(小時)之間的函數關系.請根據圖象解答下列問題:

(1)轎車到達乙地后,貨車距乙地多少千米?

(2)求線段CD對應的函數解析式.

(3)轎車到達乙地后,馬上沿原路以CD段速度返回,求貨車從甲地出發(fā)后多長時間再與轎車相遇(結果精確到0.01).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一塊直角三角形木板的一條直角邊AB長為1.5m,面積為1.5m2,工人師傅要把它加工成一個面積最大的正方形桌面,請甲、乙兩位同學進行設計加工方案,甲設計方案如圖1,乙設計方案如圖2.你認為哪位同學設計的方案較好?試說明理由.(加工損耗忽略不計,計算結果中可保留分數)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】現有正方形ABCD和一個以O為直角頂點的三角板,移動三角板,使三角板的兩直角邊所在直線分別與直線BC,CD交于M,N.

(1如圖1,若點O與點A重合,則OM與ON的數量關系是__________________;

(2如圖2,若點O正方形的中心(即兩對角線的交點,則(1中的結論是否仍然成立?請說明理由

(3如圖3,若點O在正方形的內部(含邊界,當OM=ON時,請?zhí)骄奎cO在移動過程中可形成什么圖形?

(4如圖4是點O在正方形外部的一種情況.當OM=ON時,請你就“點O的位置在各種情況下(含外部移動所形成的圖形”提出一個正確的結論.(不必說理

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示的長方體,已知它的長為4cm,寬為3cm,高為5cm

(1)求此長方體所有棱長的和;

(2)若它是一個無上蓋的精致包裝盒,制作這種包裝盒的紙每平方厘米是0.1元,問制作10個這樣的包裝盒共需多少元?(不考慮接縫之間的材料)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1)請根據下列計算,把解題過程補充完整,并把解題過程中用到的運算律寫在題后的橫線上:

解:原式

.

運算律: .

解:原式

運算律:

2)計算下列各題:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,拋物線y=﹣x2+bx+C經過點B(0,3)和點A(3,0)

(1)求該拋物線的函數表達式和直線AB的函數表達式;

(2)若直線lx軸,在第一象限內與拋物線交于點M,與直線AB交于點N,請在備用圖上畫出符合題意的圖形,并求點M與點N之間的距離的最大值或最小值,以及此時點M,N的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:平面直角坐標系中,點A(-2,0)、B(0,3),點P為第二象限內一點

(1) 如圖,將線段AB繞點P旋轉180°得線段CD,點A與點C對應,試畫出圖形;

(2) (1)中得到的點C、D恰好在同一個反比例函數的圖象上,試求直線BC的解析式;

(3) 若點Q(mn)為第四象限的一點,將線段AB繞點Q順時針旋轉90°到點E、F.若點E、F恰好在同一個反比例函數的圖象上,試直接寫出m、n之間的關系式__________________

查看答案和解析>>

同步練習冊答案