【題目】已知:如圖,在△ABC中,∠C>∠B,AD,AE分別是△ABC的高和角平分線.
(1)若∠B=30°,∠C=50°,求∠DAE的度數;
(2)∠DAE與∠C-∠B有何關系?
【答案】(1) 10°;(2) DAE= (∠C-∠B).
【解析】【試題分析】
(1)因為∠B+∠C+∠BAC=180°,∠B=30°,∠C=50°,根據三角形內角和定理得:
∠BAC=180°-30°-50°=100°.因為AE是△ABC的角平分線,根據角平分線的性質得:∠BAE=∠BAC=50°.因為∠AEC為△ABE的外角,根據外角的性質得:∠AEC=∠B+∠BAE=30°+50°=80°.因為AD是△ABC的高,所以∠ADE=90°.根據直角三角形兩銳角互余得:∠DAE=90°-∠AEC=90°-80°=10°.
(2)根據角平分線、垂直的性質得:
∠DAE=90°-∠AEC=90°-( )
又∵∠BAC=180°-∠B-∠C.
∴∠DAE=90°-∠B- (180°-∠B-∠C)= (∠C-∠B).
【試題解析】
(1)∵∠B+∠C+∠BAC=180°,∠B=30°,∠C=50°,
∴∠BAC=180°-30°-50°=100°.
∵AE是△ABC的角平分線,
∴∠BAE=∠BAC=50°.
∵∠AEC為△ABE的外角,
∴∠AEC=∠B+∠BAE=30°+50°=80°.
∵AD是△ABC的高,
∴∠ADE=90°.
∴∠DAE=90°-∠AEC=90°-80°=10°.
(2)由(1)知,
∠DAE=90°-∠AEC=90°-( )
又∵∠BAC=180°-∠B-∠C.
∴∠DAE=90°-∠B- (180°-∠B-∠C)= (∠C-∠B).
科目:初中數學 來源: 題型:
【題目】如圖,AC⊥x軸于點A,點B在y軸的正半軸上,∠ABC=60°,AB=4,BC=,點D為AC與反比例函數的圖象的交點.若直線BD將△ABC的面積分成1:2的兩部分,則k的值為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)已知:如圖1,等腰直角三角形ABC中,∠B=90°,AD是∠BAC的外角平分線,交CB邊的延長線于點D.
求證:BD=AB+AC.
(2)對于任意三角形ABC,∠ABC=2∠C,AD是∠BAC的外角平分線,交CB邊的延長線于點D,如圖2,請你寫出線段AC、AB、BD之間的數量關系并加以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,-1).
(1)請以y軸為對稱軸,畫出與△ABC對稱的△A1B1C1,并直接寫出點A1、B1、C1的坐標;
(2)△ABC的面積是 .
(3)點P(a+1,b-1)與點C關于x軸對稱,則a= ,b= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀兩名同學對下題的解答過程.一個等腰三角形的周長為28 cm,其中一邊長為8 cm,則這個三角形另外兩邊的長分別是多少?
李明說應這樣解:設腰長為x cm,則2x+8=28,解得x=10,所以這個三角形的另外兩邊的長均為10 cm.張鋼說應這樣解:設底邊長為x cm,則2×8+x=28,解得x=12,所以這
個三角形的另外兩邊的長分別為8 cm,12 cm.
試判斷李明與張鋼兩人的解答過程是否正確,若正確,請寫出判斷的依據;若不正確,請你寫出正確的解答過程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,點O是邊AC上一個動點,過點O作直線EF∥BC分別交∠ACB、外角∠ACD的平分線于點E、F.
(1)若CE=8,CF=6,求OC的長;
(2)連接AE、AF.問:當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,AD是△ABC外角的平分線,已知∠BAC=∠ACD.
(1)求證:△ABC≌△CDA;
(2)若∠B=60°,求證:四邊形ABCD是菱形.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com