【題目】數(shù)學(xué)老師布置了一道思考題“計(jì)算:(-)÷()”,小明仔細(xì)思考了一番,用了一種不同的方法解決了這個(gè)問題.
小明的解法:原式的倒數(shù)為()÷()=()×(-12)=-4+10=6,所以(-)÷()=.
(1)請(qǐng)你判斷小明的解答是否正確,并說明理由.
(2)請(qǐng)你運(yùn)用小明的解法解答下面的問題.
計(jì)算:(-)÷(+).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某周日上午8:00小宇從家出發(fā),乘車1小時(shí)到達(dá)某活動(dòng)中心參加實(shí)踐活動(dòng).11:00時(shí)他在活動(dòng)中心接到爸爸的電話,因急事要求他在12:00前回到家,他即刻按照來活動(dòng)中心時(shí)的路線,以5千米/小時(shí)的平均速度快步返回.同時(shí),爸爸從家沿同一路線開車接他,在距家20千米處接上了小宇,立即保持原來的車速原路返回.設(shè)小宇離家x(小時(shí))后,到達(dá)離家y(千米)的地方,圖中折線OABCD表示y與x之間的函數(shù)關(guān)系.
(1)活動(dòng)中心與小宇家相距 千米,小宇在活動(dòng)中心活動(dòng)時(shí)間為 小時(shí),他從活動(dòng)中心返家時(shí),步行用了 小時(shí);
(2)求線段BC所表示的y(千米)與x(小時(shí))之間的函數(shù)關(guān)系式(不必寫出x所表示的范圍);
(3)根據(jù)上述情況(不考慮其他因素),請(qǐng)判斷小宇是否能在12:00前回到家,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=4cm,∠ADC=120°,點(diǎn)E,F(xiàn)同時(shí)由A,C兩點(diǎn)出發(fā),分別沿AB,CB方向向點(diǎn)B勻速移動(dòng)(到點(diǎn)B為止),點(diǎn)E的速度為1cm/s,點(diǎn)F的速度為2cm/s,經(jīng)過t秒△DEF為等邊三角形,則t的值為( )
A.1
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,∠B=90°,AB=8cm,BC=6cm,點(diǎn)P從點(diǎn)A開始沿△ABC的邊做逆時(shí)針運(yùn)動(dòng),且速度為每秒1cm;點(diǎn)Q從點(diǎn)B開始沿△ABC的邊做逆時(shí)針運(yùn)動(dòng),且速度為每秒2cm,他們同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)出發(fā)2秒后,P,Q兩點(diǎn)間的距離為多少cm?
(2)在運(yùn)動(dòng)過程中,△PQB能形成等腰三角形嗎?若能,請(qǐng)求出幾秒后第一次形成等腰三角形;若不能,則說明理由.
(3)出發(fā)幾秒后,線段PQ第一次把△ABC的周長(zhǎng)分成相等兩部分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,過點(diǎn)D作對(duì)角線BD的垂線交BA的延長(zhǎng)線于點(diǎn)E.
(1)證明:四邊形ACDE是平行四邊形;
(2)若AC=8,BD=6,求△ADE的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛貨車從永福超市出發(fā)負(fù)責(zé)送貨,向東走了5千米到達(dá)小明家,繼續(xù)向東走了1.5千米到達(dá)小紅家,然后向西走了9.5千米到達(dá)小剛家,最后返回永福超市.
(1)以永福超市為原點(diǎn),向東為正方向,1個(gè)單位長(zhǎng)度表示1千米,請(qǐng)你在數(shù)軸上標(biāo)出小明、小紅、小剛家的位置.
(2)小明家與小剛家相距多遠(yuǎn)?
(3)若貨車每千米耗油0.6升,那么這輛貨車此次送貨共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OABC是矩形,ADEF是正方形,點(diǎn)A,D在x軸的正半軸,點(diǎn)C在y軸的正半軸上,點(diǎn)F再AB上,點(diǎn)B,E在反比例函數(shù)y= 的圖象上,OA=2,OC=6,則正方形ADEF的邊長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:如圖1,在平面直角坐標(biāo)系中,A、B兩點(diǎn)的坐標(biāo)分別為A(x1 , y1),B(x2 , y2),AB中點(diǎn)P的坐標(biāo)為(xp , yp).由xp﹣x1=x2﹣xp , 得xp= ,同理yp= ,所以AB的中點(diǎn)坐標(biāo)為( , ).由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2 , 所以A、B兩點(diǎn)間的距離公式為AB= .這兩公式對(duì)A、B在平面直角坐標(biāo)系中其它位置也成立.解答下列問題:
(1)已知M(1,﹣2),N(﹣1,2),直接利用公式填空:MN中點(diǎn)坐標(biāo)為 , MN= .
(2)如圖2,直線l:y=2x+2與拋物線y=2x2交于A、B兩點(diǎn),P為AB的中點(diǎn),過P作x軸的垂線交拋物線于點(diǎn)C.
(a)求A、B兩點(diǎn)的坐標(biāo)及C點(diǎn)的坐標(biāo);
(b)連結(jié)AB、AC,求證△ABC為直角三角形;
(c)將直線l平移到C點(diǎn)時(shí)得到直線l′,求兩直線l與l′的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,D、F是AB邊上的兩點(diǎn),以DF為直徑的⊙O與BC相交于點(diǎn)E,連接EF,過F作FG⊥BC于點(diǎn)G,其中∠OFE= ∠A.
(1)求證:BC是⊙O的切線;
(2)若sinB= ,⊙O的半徑為r,求△EHG的面積(用含r的代數(shù)式表示).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com