如圖,延長(zhǎng)的邊上任意一點(diǎn),那么下列不等關(guān)系中一定成立的是

[  ]

 

 

 

A.
B.
C.
D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

6、如圖,延長(zhǎng)△ABC的邊BA到E,D是AC上任意一點(diǎn),則下列不等關(guān)系中一定成立的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

探究問(wèn)題
(1)方法感悟:
一班同學(xué)到野外上數(shù)學(xué)活動(dòng)課,為測(cè)量池塘兩端A、B的距離,設(shè)計(jì)了如下方案:
方案(Ⅰ)如圖1,先在平地上取一個(gè)可直接到達(dá)A、B的點(diǎn)C,連接AC、BC,并分別延長(zhǎng)AC至D,BC至E,使DC=AC,EC=BC,最后測(cè)出DE的距離即為AB的長(zhǎng);感悟解題方法,并完成下列填空:
解:在如圖所示的兩個(gè)三角形△DEC和△ABC中:DC=AC,∠
ACB
ACB
=∠
DCE
DCE
(對(duì)頂角相等),EC=BC,∴△DEC≌△ABC
(SAS)
(SAS)
,∴DE=AB(全等三角形對(duì)應(yīng)邊相等),即DE的距離即為AB的長(zhǎng).
(2)方法遷移:
方案(Ⅱ)如圖2,先過(guò)B點(diǎn)作AB的垂線BF,再在BF上取C、D兩點(diǎn)使BC=CD,接著過(guò)D作BD的垂線DE,交AC的延長(zhǎng)線于E,則測(cè)出DE的長(zhǎng)即為AB的距離.請(qǐng)你說(shuō)明理由.  
(3)問(wèn)題拓展:
方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是
作∠ABC=∠EDC=90°
作∠ABC=∠EDC=90°
;若僅滿(mǎn)足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立?
成立
成立

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖1,在平行四邊形ABCD中,E、F為BC上兩點(diǎn),且BE=CF,AF=DE.
求證:①△ABF≌△DCE;②四邊形ABCD是矩形.
(2)如圖2,已知△ABC是等邊三角形,D點(diǎn)是AC的中點(diǎn),延長(zhǎng)BC到E,使CE=CD.
①請(qǐng)用尺規(guī)作圖的方法,過(guò)點(diǎn)D作DM⊥BE,垂足為M;(不寫(xiě)作法,保留作圖痕跡)
②求證:BM=EM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆河北省承德市九年級(jí)升學(xué)模擬考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖13-1,若四邊形ABCD、四邊形GFED都是正方形,顯然圖中有AG=CE, AG⊥CE.
(1)當(dāng)正方形GFED繞D旋轉(zhuǎn)到如圖13-2的位置時(shí),AG=CE是否成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.
(2)當(dāng)正方形GFED繞D旋轉(zhuǎn)到如圖13-3的位置,點(diǎn)F在邊AD上,延長(zhǎng)CE交AG于H,交AD于M.
①求證:AG⊥CH;
②當(dāng)AD=4,DG=時(shí),求CM的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案