如圖,已知∠AOB=30°,P為其內(nèi)部一點(diǎn),OP=3,M、N分別為OA、OB邊上的一點(diǎn),要使△PMN的周長(zhǎng)最小,請(qǐng)給出確定點(diǎn)M、N位置的方法,并求出最小周長(zhǎng).
分析:作點(diǎn)P關(guān)于OA的對(duì)稱點(diǎn)P1,點(diǎn)P關(guān)于OB的對(duì)稱點(diǎn)P2,連結(jié)P1P2,與OA的交點(diǎn)即為點(diǎn)M,與OB的交點(diǎn)即為點(diǎn)N,則此時(shí)M、N符合題意,求出線段P1P2的長(zhǎng)即可.
解答:解:作點(diǎn)P關(guān)于OA的對(duì)稱點(diǎn)P1,點(diǎn)P關(guān)于OB的對(duì)稱點(diǎn)P2,連結(jié)P1P2,
與OA的交點(diǎn)即為點(diǎn)M,與OB的交點(diǎn)即為點(diǎn)N,
△PMN的最小周長(zhǎng)為PM+MN+PN=P1M+MN+P2N=P1P2,即為線段P1P2的長(zhǎng),
連結(jié)OP1、OP2,則OP1=OP2=3,
又∵∠P1OP2=2∠AOB=60°,
∴△OP1P2是等邊三角形,
∴P1P2=OP1=3,
即△PMN的周長(zhǎng)的最小值是3.
點(diǎn)評(píng):本題考查了等邊三角形的性質(zhì)和判定,軸對(duì)稱-最短路線問(wèn)題的應(yīng)用,關(guān)鍵是確定M、N的位置.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、(1)如圖,已知∠AOB和C、D兩點(diǎn),用直尺和圓規(guī)作一點(diǎn)P,使PC=PD,且P到OA、OB兩邊距離相等.

(2)用三角尺作圖在如圖的方格紙中,
①作△ABC關(guān)于直線l1對(duì)稱的△A1B1C1;再作△A1B1C1關(guān)于直線l2對(duì)稱的△A2B2C2;再作△A2B2C2關(guān)于直線l3對(duì)稱的△A3B3C3
②△ABC與△A3B3C3成軸對(duì)稱嗎?如果成,請(qǐng)畫(huà)出對(duì)稱軸;如果不成,把△A3B3C3怎樣平移可以與△ABC成軸對(duì)稱?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知∠AOB是直角,∠AOC是銳角,ON平分∠AOC,OM平分∠BOC,則∠MON是( 。精英家教網(wǎng)
A、45°
B、45°+
1
2
∠AOC
C、60°-
1
2
∠AOC
D、不能計(jì)算

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.
(1)求∠EOF的度數(shù);
(2)若∠AOC=x°,∠EOF=y°.則請(qǐng)用x的代數(shù)式來(lái)表示y;
(3)如果∠AOC+∠EOF=156°,則∠EOF是多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

尺規(guī)作圖:
如圖,已知∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB(不用寫(xiě)作法,保留作圖痕跡).并證明你所作圖的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知∠AOB=x(0°<x<180°),OC平分∠AOB,點(diǎn)N為OB上一個(gè)定點(diǎn).通過(guò)畫(huà)圖可以知道:當(dāng)∠AOB=45°時(shí),在射線OC上存在點(diǎn)P,使△ONP成為等腰三角形,且符合條件的點(diǎn)有三個(gè),即P1(頂點(diǎn)為P2),P2(頂點(diǎn)為0),P3(頂點(diǎn)為N).
試問(wèn):當(dāng)∠AOB分別為銳角、直角、鈍角時(shí),在射線OC上使△ONP成為等腰三角形的點(diǎn)P是否仍然存在三個(gè)?請(qǐng)分別畫(huà)出簡(jiǎn)圖并加以說(shuō)明.

查看答案和解析>>

同步練習(xí)冊(cè)答案