精英家教網(wǎng)如圖,直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、B坐標(biāo)分別為(3,0),(3,4),動(dòng)點(diǎn)M、N分別從點(diǎn)O、B同時(shí)出發(fā),都以每秒1個(gè)單位的速度運(yùn)動(dòng),其中點(diǎn)M沿OA向終點(diǎn)A運(yùn)動(dòng),點(diǎn)B沿BC向終點(diǎn)C運(yùn)動(dòng),過(guò)點(diǎn)N作NP⊥BC,交AC于P,連接MP,已知?jiǎng)狱c(diǎn)運(yùn)動(dòng)了x秒.
(1)P點(diǎn)坐標(biāo)為(
 
 
)(用含x的代數(shù)式表示)
(2)當(dāng)x為何值時(shí),△MPA為等腰三角形.
分析:(1)根據(jù)PG和OG的長(zhǎng)度即可求得P的坐標(biāo);
(2)△MPA為等腰三角形,則PM=PA或PM=MA或PA=AM即可,分別求x的值,即可解題.
解答:解:動(dòng)點(diǎn)運(yùn)動(dòng)x秒后,則BN=x,
精英家教網(wǎng)
則PG=
4
3
x,CN=3-x,
∵∠ACB=∠PCN,∠ABC=∠PNC=90°,
∴△CPN∽△CAB,
PN
AB
=
CN
CB
,又CN=3-x,AB=4,BC=3,
∴PN=
4
3
(3-x),
則PG=NG-NP=4-
4
3
(3-x)=
4
3
x,
∴P點(diǎn)的坐標(biāo)為 (3-x,
4
3
x);

(2)要使得△MPA為等腰三角形,
①,AP=PM,使得AG=MG即可,
MG=3-x-x=3-2x,AG=x,解得x=1,
②,AM=AP,則AM=3-x,AP=
5
3
x,解得x=
9
8

③,PM=AM,則AM=3-x,PM=
(3-2x)2+(
4
3
x)
2
,解得x=
54
43
,
故x=1或
9
8
54
43
時(shí),△MPA為等腰三角形.
點(diǎn)評(píng):本題考查了勾股定理在直角三角形中的運(yùn)用,考查了相似三角形對(duì)應(yīng)邊比值相等的性質(zhì),本題中列出關(guān)于x的關(guān)系式并求解是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,A點(diǎn)坐標(biāo)為(2,-1),則△ABC的面積為
 
平方單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直角坐標(biāo)系中,已知點(diǎn)A(3,0),B(t,0)(0<t<
32
),以AB為邊在x軸上方作正方形ABCD,點(diǎn)E是直線OC與正方形ABCD的外接圓除點(diǎn)C以外的另一個(gè)交點(diǎn),連接AE與BC相交于點(diǎn)F.
(1)求證:△OBC≌△FBA;?
(2)一拋物線經(jīng)過(guò)O、F、A三點(diǎn),試用t表示該拋物線的解析式;?
(3)設(shè)題(2)中拋物線的對(duì)稱軸l與直線AF相交于點(diǎn)G,若G為△AOC的外心,試求出拋物線的解析式;?
(4)在題(3)的條件下,問(wèn)在拋物線上是否存在點(diǎn)P,使該點(diǎn)關(guān)于直線AF的對(duì)稱點(diǎn)在x軸上精英家教網(wǎng)?若存在,請(qǐng)求出所有這樣的點(diǎn);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在如圖平面直角坐標(biāo)系中,△ABC三個(gè)頂點(diǎn)A、B、C的坐標(biāo)分別為A(2,-1),B(1,-3),C(4,-4),
請(qǐng)解答下列問(wèn)題:
(1)把△ABC向左平移4個(gè)單位,再向上平移3個(gè)單位,恰好得到△A1B1C1試寫(xiě)出△A1B1C1三個(gè)頂點(diǎn)的坐標(biāo);
(2)在直角坐標(biāo)系中畫(huà)出△A1B1C1
(3)求出線段AA1的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,C點(diǎn)坐標(biāo)為(1,2),原來(lái)△ABC各個(gè)頂點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)都增加2,所得的三角形面積是
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在如圖的直角坐標(biāo)系中,將△ABC平移后得到△A′B′C′,它們的個(gè)頂點(diǎn)坐標(biāo)如表所示:
△ABC A(a,0) B(3,0) C(5,5)
△A′B′C′ A′(4,2) B′(7,b) C′(c,d)
(1)觀察表中各對(duì)應(yīng)點(diǎn)坐標(biāo)的變化,并填空:△ABC向
平移
4
4
個(gè)單位長(zhǎng)度,再向
平移
2
2
個(gè)單位長(zhǎng)度可以得到△A′B′C′;
(2)在坐標(biāo)系中畫(huà)出△ABC及平移后的△A′B′C′;
(3)求出△A′B′C′的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案