一次函數(shù)y=-x-1不經(jīng)過的象限是…………………………………………(      )
A.第一象限B.第二象限C.第三象限D.第四象限
A
:∵一次函數(shù)y=-x-1中k=-1<0,b=-1<0,
∴此函數(shù)的圖象經(jīng)過二、三、四象限,不經(jīng)過第一象限.
故答案為:A
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

 某一次函數(shù)的圖象經(jīng)過點(0,2),且函數(shù)y的值隨自變量x的增大而減少,請寫出一個符合上述條件的函數(shù)關(guān)系式:              

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在直角坐標(biāo)系中,點是反比例函數(shù)的圖象上一點,軸的正半軸于點,的中點;一次函數(shù)的圖象經(jīng)過、兩點,并交軸于點

小題1:(1)求反比例函數(shù)和一次函數(shù)的解析式;
小題2:(2)觀察圖象,請指出在軸的右側(cè),當(dāng)的取值范圍,當(dāng)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

根據(jù)函數(shù)的圖象,求的值,并求與坐標(biāo)軸所圍成的三角形的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題10分)某服裝廠現(xiàn)有A種布料70m,B種布料52m,現(xiàn)計劃用這兩種布料生產(chǎn)M, N兩種型號的時裝80套,已知做一套M型號的時裝需要A種布料0.6m,B種布料0.9m,可獲利45元,做一套N型號的時裝需要A種布料1.1m,B種布料0.4m,可獲利50元,若設(shè)生產(chǎn)N型號的時裝套數(shù)為x,用這批布料生產(chǎn)這兩種型號的時裝所獲的總利潤為y元。
小題1:(1)求y與x的函數(shù)關(guān)系式,并求出自變量x的取值范圍。
小題2:(2)該服裝廠在生產(chǎn)這批時裝中,當(dāng)生產(chǎn)N型號的時裝多少套時,所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

、當(dāng)m=      時,是正比例函數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題10分)某個體經(jīng)營戶銷售同一型號的A、B兩種品牌的服裝,平均每月共銷售60件,已知兩種品牌的成本和利潤如表所示,設(shè)平均每月的利潤為y元,每月銷售A品牌x件.

小題1:⑴寫出y關(guān)于x的函數(shù)關(guān)系式
小題2:⑵如果每月投入的成本不超過6500元,所獲利潤不少于2920元,不考慮其他因素,那么銷售方案有哪幾種?
小題3:⑶要使平均每月利潤率最大,請直接寫出A、B兩種品牌的服裝各銷售多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知:2x-3y=1,若把看成的函數(shù),則可以表示為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

蕭山素以“蘿卜干之鄉(xiāng)”著稱.某鄉(xiāng)組織20輛汽車裝運(yùn)A、B、C三種不同包裝的蘿卜干42噸到外地銷售.按規(guī)定每輛車只裝同一種蘿卜干,且必須裝滿,每種蘿卜干不少于2車.

小題1:設(shè)有x輛車裝運(yùn)A種蘿卜干,用y輛車裝運(yùn)B種蘿卜干,根據(jù)下表提供的信息,求y與x之間的函數(shù)關(guān)系,并求x的取值范圍;
小題2:設(shè)此次外銷活動的利潤為W(百元),求W與x的函數(shù)關(guān)系式以及最大利潤,并安排相應(yīng)的車輛分配方案.

查看答案和解析>>

同步練習(xí)冊答案