【題目】如圖,已知AB是⊙O的直徑,直線l與⊙O相切于點C且,弦CD交AB于E,BF⊥l,垂足為F,BF交⊙O于G.
(1)求證:CE2=FGFB;
(2)若tan∠CBF=,AE=3,求⊙O的直徑.
【答案】(1)見解析;(2)15.
【解析】
(1)由切割線定理知:CF2=FGFB,欲證本題的結論,需先證得CE=CF;可通過證△BCE≌△BCF得出;
(2)欲求⊙O的直徑,已知AE的長,關鍵是求出BE的長度;在Rt△ABC中,CE⊥AB,根據射影定理得到CE2=AEEB,由此可求出BE的長.
(1)連接AC,
∵AB為直徑,
∴∠ACB=90°,
∵,且AB是直徑,
∴AB⊥CD,
即CE是Rt△ABC的高,
∴∠A=∠ECB,∠ACE=∠EBC,
∵CF是⊙O的切線,
∴∠FCB=∠A,CF2=FGFB,
∴∠FCB=∠ECB,
∵∠BFC=∠CEB=90°,CB=CB,
∴△BCF≌△BCE,
∴CE=CF,∠FBC=∠CBE,
∴CE2=FGFB;
(2)∵∠CBF=∠CBE,∠CBE=∠ACE,
∴∠ACE=∠CBF;
∴tan∠CBF=tan∠ACE=,
∵AE=3,
∴,
∴CE=6,
在Rt△ABC中,CE是高,
∴CE2=AEEB,即62=3EB,
∴EB=12,
∴⊙O的直徑為:12+3=15.
科目:初中數學 來源: 題型:
【題目】我們知道,經過原點的拋物線可以用y=ax2+bx(a≠0)表示,對于這樣的拋物線:
(1)當拋物線經過點(﹣2,0)和(﹣1,3)時,求拋物線的表達式;
(2)當拋物線的頂點在直線y=﹣2x上時,求b的值;
(3)如圖,現有一組這樣的拋物線,它們的頂點A1、A2、…,An在直線y=﹣2x上,橫坐標依次為﹣1,﹣2,﹣3,…,﹣n(n為正整數,且n≤12),分別過每個頂點作x軸的垂線,垂足記為B1、B2,…,Bn,以線段AnBn為邊向左作正方形AnBnCnDn,如果這組拋物線中的某一條經過點Dn,求此時滿足條件的正方形AnBnCnDn的邊長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為提高學生的閱讀興趣,某學校建立了共享書架,并購買了一批書籍.其中購買種圖書花費了3000元,購買種圖書花費了1600元,A種圖書的單價是種圖書的1.5倍,購買種圖書的數量比種圖書多20本.
(1)求和兩種圖書的單價;
(2)書店在“世界讀書日”進行打折促銷活動,所有圖書都按8折銷售學校當天購買了種圖書20本和種圖書25本,共花費多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖:在平面直角坐標系中,點D是直線y=﹣x上一點,過O、D兩點的圓⊙O1分別交x軸、y軸于點A和B.
(1)當A(﹣12,0),B(0,﹣5)時,求O1的坐標;
(2)在(1)的條件下,過點A作⊙O1的切線與BD的延長線相交于點C,求點C的坐標;
(3)若點D的橫坐標為,點I為△ABO的內心,IE⊥AB于E,當過O、D兩點的⊙O1的大小發(fā)生變化時,其結論:AE﹣BE的值是否發(fā)生變化?若不變,請求出其值;若變化,請求出變化范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,,點是邊上的動點,連接,以為斜邊在的下方作等腰直角三角形.
(1)填空:的面積等于 ;
(2)連接,求證:是的平分線;
(3)點在邊上,且, 當從點出發(fā)運動至點停止時,求點相應的運動路程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市某中學有一塊四邊形的空地ABCD,如圖所示,為了綠化環(huán)境,學校計劃在空地上種植草皮,經測量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.
(1)求出空地ABCD的面積.
(2)若每種植1平方米草皮需要200元,問總共需投入多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,PD切⊙O于點C,與BA的延長線交于點D,DE⊥PO交PO延長線于點E,連接PB,∠EDB=∠EPB.
(1)求證:PB是的切線.
(2)若PB=6,DB=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了維護國家主權和海洋權力,海監(jiān)部門對我國領海實行常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務的海監(jiān)船以每小時30海里的速度向正東方航行,在處測得燈塔在北偏東60°方向上, 繼續(xù)航行后到達處, 此時測得燈塔在北偏東30°方向上.
(1) 求的度數;
(2)已知在燈塔的周圍15海里內有暗礁,問海監(jiān)船繼續(xù)向正東方向航行是否安全?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】光華農機租賃公司共有50臺聯(lián)合收割機,其中甲型20臺,乙型30臺,先將這50臺聯(lián)合收割機派往A、B兩地區(qū)收割小麥,其中30臺派往A地區(qū),20臺派往B地區(qū).兩地區(qū)與該農機租賃公司商定的每天的租賃價格見表:
每臺甲型收割機的租金 | 每臺乙型收割機的租金 | |
A地區(qū) | 1800 | 1600 |
B地區(qū) | 1600 | 1200 |
(1)設派往A地區(qū)x臺乙型聯(lián)合收割機,租賃公司這50臺聯(lián)合收割機一天獲得的租金為y(元),求y與x間的函數關系式,并寫出x的取值范圍;
(2)若使農機租賃公司這50臺聯(lián)合收割機一天獲得的租金總額不低于79 600元,說明有多少種分配方案,并將各種方案設計出來;
(3)如果要使這50臺聯(lián)合收割機每天獲得的租金最高,請你為光華農機租賃公司提一條合理化建議.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com