【題目】如圖,某大樓的頂部豎有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的傾斜角∠BAH=30°,AB=20米,AB=30米.
(1)求點(diǎn)B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
【答案】(1) BH為10米;(2) 宣傳牌CD高約(40﹣20)米
【解析】
(1)過B作DE的垂線,設(shè)垂足為G.分別在Rt△ABH中,通過解直角三角形求出BH、AH;
(2)在△ADE解直角三角形求出DE的長,進(jìn)而可求出EH即BG的長,在Rt△CBG中,∠CBG=45°,則CG=BG,由此可求出CG的長然后根據(jù)CD=CG+GE-DE即可求出宣傳牌的高度.
(1)過B作BH⊥AE于H,
Rt△ABH中,∠BAH=30°,
∴BH=AB=×20=10(米),
即點(diǎn)B距水平面AE的高度BH為10米;
(2)過B作BG⊥DE于G,
∵BH⊥HE,GE⊥HE,BG⊥DE,
∴四邊形BHEG是矩形.
∵由(1)得:BH=10,AH=10,
∴BG=AH+AE=(10+30)米,
Rt△BGC中,∠CBG=45°,
∴CG=BG=(10+30)米,
∴CE=CG+GE=CG+BH=10+30+10=10+40(米),
在Rt△AED中,
=tan∠DAE=tan60°=,
DE=AE=30
∴CD=CE﹣DE=10+40﹣30=40﹣20.
答:宣傳牌CD高約(40﹣20)米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年歌舞劇《白毛女》將在廣州歌舞劇院公演,對團(tuán)體購買門票實(shí)行優(yōu)惠,決定在原定票價(jià)基礎(chǔ)上每張降價(jià)元,這樣按原定票價(jià)需花費(fèi)元購買的門票現(xiàn)在只需花費(fèi)了元就可以買到了.
(1)求每張門票的原定票價(jià);
(2)根據(jù)實(shí)際情況,活動(dòng)組織單位決定對于個(gè)人購票也采取優(yōu)惠政策,原定票價(jià)經(jīng)過連續(xù)兩次降價(jià)后降為元,求平均每次降價(jià)的百分率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的邊AB是⊙O的直徑,點(diǎn)C在⊙O上,已知AC=6cm,BC=8cm,點(diǎn)P、Q分別在邊AB、BC上,且點(diǎn)P不與點(diǎn)A、B重合,BQ=kAP(k>0),聯(lián)接PC、PQ.
(1)求⊙O的半徑長;
(2)當(dāng)k=2時(shí),設(shè)AP=x,△CPQ的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;
(3)如果△CPQ與△ABC相似,且∠ACB=∠CPQ,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=α(90°<α<180°),將△ABC繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)2β(0°<β<90°)后得△AED,其中點(diǎn)E、D分別和點(diǎn)B、C對應(yīng),聯(lián)結(jié)CD,如果CD⊥ED,請寫出一個(gè)關(guān)于α與β的等量關(guān)系的式子_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條筆直的公路上有AB兩地,小明騎自行車從A地去B地,小剛騎電動(dòng)車從B地去A地然后立即原路返回到B地,如圖是兩人離B地的距離y(千米)和行駛時(shí)間x(小時(shí))之間的函數(shù)圖象.請根據(jù)圖象回答下列問題:
(1)AB兩地的距離是_____,小明行駛的速度是_____.
(2)若兩人間的距離不超過3千米時(shí),能夠用無線對講機(jī)保持聯(lián)系,那么小剛從A地原路返回到B地途中,兩人能夠用無線對講機(jī)保持聯(lián)系的x的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與x軸交于點(diǎn)B,與y軸交于點(diǎn)C,拋物線
與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)點(diǎn)M是上述拋物線上一點(diǎn),如果△ABM和△ABC相似,求點(diǎn)M的坐標(biāo);
(3)連接AC,求頂點(diǎn)D、E、F、G在△ABC各邊上的矩形DEFC面積最大時(shí),寫出該矩形在AB邊上的頂點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在體育中考項(xiàng)目中考生可在籃球、排球中選考一項(xiàng).小明為了選擇一項(xiàng)參加體育中考,將自己的10次測驗(yàn)成績進(jìn)行比較并制作了折線統(tǒng)計(jì)圖,依據(jù)圖中信息小明選擇哪一項(xiàng)參加體育中考更合適,并說明理由,______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在中,,,點(diǎn)為射線上一點(diǎn)(與點(diǎn)不重合),過點(diǎn)作于點(diǎn),且(點(diǎn)與點(diǎn)在射線同側(cè)),連接,.
(1)如圖1,當(dāng)點(diǎn)在線段上時(shí),請直接寫出的度數(shù).
(2)當(dāng)點(diǎn)在線段的延長線上時(shí),依題意在圖2中補(bǔ)全圖形并判斷(1)中結(jié)論是否成立?若成立,請證明;若不成立,請說明理由.
(3)在(1)的條件下,與相交于點(diǎn),若,直接寫出的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),過點(diǎn)C作⊙O的切線,交BA的延長線交于點(diǎn)D,過點(diǎn)B作BE⊥BA,交DC延長線于點(diǎn)E,連接OE,交⊙O于點(diǎn)F,交BC于點(diǎn)H,連接AC。
(1)求證:∠ECB=∠EBC;
(2)連接BF,CF,若CF=6,sin∠FCB=,求AC的長。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com