【題目】如圖,△ABC中,AB=AC=2,∠B=∠C=40°.點D在線段BC上運動(點D不與B、C重合),連接AD,作∠ADE=40°,DE交線段AC于E.
(1)當(dāng)∠BAD=20°時,∠EDC=__________°;
(2)當(dāng)DC等于多少時,△ABD≌△DCE?試說明理由;
(3)△ADE能成為等腰三角形嗎?若能,請直接寫出此時∠BAD的度數(shù);若不能,請說明理由.
【答案】20
【解析】試題分析:(1)利用三角形的外角的性質(zhì)得出答案即可;
(2)利用∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC得出∠BAD=∠EDC,進(jìn)而求出△ABD≌△DCE;
(3)根據(jù)等腰三角形的判定以及分類討論得出即可.
試題解析:(1)∵∠BAD=20°,∠B=40°,
∴∠ADC=60°,
∵∠ADE=40°,
∴∠EDC=60°-40°=20°.
(2)當(dāng)DC=2時,△ABD≌△DCE;
理由:∵∠ADE=40°,∠B=40°,
又∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC.
∴∠BAD=∠EDC.
在△ABD和△DCE中,
.
∴△ABD≌△DCE(ASA);
(3)當(dāng)∠BAD=30°時,
∵∠B=∠C=40°,∴∠BAC=100°,
∵∠ADE=40°,∠BAD=30°,
∴∠DAE=70°,
∴∠AED=180°-40°-70°=70°,
∴DA=DE,這時△ADE為等腰三角形;
當(dāng)∠BAD=60°時,∵∠B=∠C=40°,∴∠BAC=100°,
∵∠ADE=40°,∠BAD=60°,∠DAE=40°,
∴EA=ED,這時△ADE為等腰三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠B=90°,∠C=30°.
(1)求證:AB=AC;并請你用文字?jǐn)⑹鲋苯侨切蔚倪@條性質(zhì),把它寫在下列橫線上:
;
(2)利用(1)題所得結(jié)論繼續(xù)解答下列問題:
如圖2,在Rt△ABC中,∠B=90°,BC=,∠C=30°.點D從點C出發(fā)沿CA方向以每秒2個單位長的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以每秒1個單位長的速度向點B勻速運動,當(dāng)其中一個點到達(dá)終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒(t>0).過點D作DF⊥BC于點F,連結(jié)DE、EF.
①求證:四邊形AEFD是平行四邊形;
②當(dāng)t為何值時,△DEF為直角三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:CD是⊙O的直徑,線段AB過圓心O,且OA=OB=, CD=2連接AC、AD、BD、BC,AD、CB分別交⊙O于E、F.
(1)問四邊形CEDF是何種特殊四邊形?請證明你的結(jié)論;
(2)當(dāng)AC與⊙O相切時,四邊形CEDF是正方形嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“創(chuàng)文明城,迎省運會”合唱比賽中,10位評委給某隊的評分如下表所示,則下列說法正確的是( 。
成績(分) | 9.2 | 9.3 | 9.4 | 9.5 | 9.6 |
人數(shù) | 3 | 2 | 3 | 1 | 1 |
A. 中位數(shù)是9.4分B. 中位數(shù)是9.35分
C. 眾數(shù)是3和1D. 眾數(shù)是9.4分
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊長為5,對角線,點E在邊AB上,BE=2,點P是AC上的一個動點,則PB+PE的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,點P(-2,a), Q(-2,a-5),若△POQ是直角三角形,則點P的坐標(biāo)不可能為( )
A. (-2,4 )B. (-2, 0)C. (-2, 5)D. (-2,2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com