【題目】已知拋物線y=ax2+bx+c(a≠0)經(jīng)過(guò)原點(diǎn),頂點(diǎn)為A(h,k)(h≠0).
(1)當(dāng)h=1,k=2時(shí),求拋物線的解析式;
(2)若拋物線y=tx2(t≠0)也經(jīng)過(guò)點(diǎn)A,過(guò)a與t之間的關(guān)系式;
(3)在(2)的條件下,已知a=﹣ ,直線l:y= x﹣1與拋物線y=tx2﹣ x﹣7交于點(diǎn)B,C,與x軸,y軸交于點(diǎn)D,E,點(diǎn)M在拋物線y=tx2﹣ x﹣7上,且點(diǎn)M的橫坐標(biāo)為m(0<m<6).MF∥y軸交于直線l于點(diǎn)F,點(diǎn)N在直線l上,且四邊形MNFQ為矩形(如圖),若矩形MNFQ的周長(zhǎng)為P,求P的最大值.
【答案】
(1)解:∵由題意可知拋物線頂點(diǎn)坐標(biāo)為(1,2),
∴可設(shè)拋物線解析式為y=a(x﹣1)2+2,
∵拋物線過(guò)原點(diǎn),
∴0=a(0﹣1)2+2,解得a=﹣2,
∴拋物線解析式為y=﹣2(x﹣1)2+2;
(2)解:∵拋物線y=tx2(t≠0)也經(jīng)過(guò)點(diǎn)A,
∴k=th2,
∴y=a(x﹣h)2+k=a(x﹣h)2+th2,
∵當(dāng)x=0時(shí)y=0,
∴0=ah2+th2,
∵h(yuǎn)≠0,
∴a+t=0,即a=﹣t;
(3)解:由(2)可知a=﹣t,
∴當(dāng)a=-時(shí),t= ,
∴M(m, m2-m-7),F(xiàn)(m,m﹣1),
∴FM=(m﹣1)﹣(m2﹣m﹣7)=﹣m2+2m+6,
又在y= x﹣1中,
當(dāng)x=0時(shí),y=﹣1,y=0時(shí),x=,
∴OD=,OE=1,
∴DE==,
∵M(jìn)F∥y軸,
∴∠DEO=∠MFN,
在矩形MNFQ中,NF=MF·cos∠MFN=MF·=MF,
MN=MF·sin∠MFN=MF·=MF,
∴P=2(MN+NF)=MF=(﹣m2+2m+6)=- m2+ m+=﹣(m﹣2)2+ ,
∵0<m<6,﹣<0,
∴當(dāng)m=2時(shí),P取最大值,最大值為 .
【解析】(1)由題可知拋物線頂點(diǎn)坐標(biāo)為(1,2),依此可設(shè)拋物線解析式為y=a(x﹣1)2+2,又拋物線過(guò)原點(diǎn),從而得出拋物線解析式.
(2)將A點(diǎn)坐標(biāo)代入拋物線y=tx2(t≠0),再將(0,0)代入y=a(x﹣h)2+k,由此即可得出即a=﹣t.
(3)由(2)知a=﹣t,由題意知M(m, m2-m-7),F(xiàn)(m,m﹣1),從而得FM=﹣m2+2m+6;根據(jù)已知條件得OD=,OE=1,
根據(jù)勾股定理得DE=,由平行線性質(zhì)得∠DEO=∠MFN;在矩形MNFQ中,由銳角三角函數(shù)定義得NF=MF,MN=MF,從而得出P=2(MN+NF)=﹣(m﹣2)2+ ,根據(jù)二次函數(shù)得性質(zhì)和自變量的取值范圍0<m<6得當(dāng)m=2時(shí),Pmin= .
【考點(diǎn)精析】關(guān)于本題考查的勾股定理的概念和矩形的性質(zhì),需要了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;矩形的四個(gè)角都是直角,矩形的對(duì)角線相等才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A、B兩點(diǎn)在數(shù)軸上對(duì)應(yīng)的數(shù)是a和b,且,點(diǎn)P為數(shù)軸上一動(dòng)點(diǎn),對(duì)應(yīng)的數(shù)為x.
(1)求A、B兩點(diǎn)間的距離;
(2)是否存在點(diǎn)P,使AP=PB,若存在,求出x的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方形ABCD中,AB=2,BC=1,運(yùn)點(diǎn)P從點(diǎn)B出發(fā),沿路線BCD作勻速運(yùn)動(dòng),那么△ABP的面積與點(diǎn)P運(yùn)動(dòng)的路程之間的函數(shù)圖象大致是( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了美化校園計(jì)劃購(gòu)買(mǎi)茶花、桂花兩種樹(shù)苗共600株,茶花樹(shù)苗每株35元,桂花樹(shù)苗每株40元.相關(guān)資料表明:茶花、桂花樹(shù)苗的成活率分別為80%,90%.
(1)若購(gòu)買(mǎi)這兩種樹(shù)苗共用去22000元,則茶花、桂花樹(shù)苗各購(gòu)買(mǎi)多少株?
(2)若要使這批樹(shù)苗的總成活率不低于85%,則茶花樹(shù)苗至多購(gòu)買(mǎi)多少株?
(3)在(2)的條件下,應(yīng)如何選購(gòu)樹(shù)苗,使購(gòu)買(mǎi)樹(shù)苗的費(fèi)用最低,并求出最低費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分8分)
如圖,點(diǎn)E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF與DE交于點(diǎn)O.
(1)求證:AB=DC;
(2)試判斷△OEF的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC=10,BC=16.點(diǎn)D在邊BC上,且點(diǎn)D到邊AB和邊AC的距離相等.
(1)用直尺和圓規(guī)作出點(diǎn)D(不寫(xiě)作法,保留作圖痕跡,在圖上標(biāo)注出點(diǎn)D);
(2)求點(diǎn)D到邊AB的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是半圓直徑,半徑OC⊥AB于點(diǎn)O,D為半圓上一點(diǎn),AC∥OD,AD與OC交于點(diǎn)E,連結(jié)CD、BD,給出以下三個(gè)結(jié)論:①OD平分∠COB;②BD=CD;③CD2=CECO,其中正確結(jié)論的序號(hào)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在圖a、圖b、圖c中都有直線m∥n,
(1)在圖a中,∠2和∠1、∠3之間的數(shù)量關(guān)系是__________________.
(2)猜想:在圖b中,∠1、∠2、∠3、∠4之間的數(shù)量關(guān)系是____________________.
(3)猜想:在圖c中,∠2、∠4和∠1、∠3、∠5的數(shù)量關(guān)系式是____________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com