【題目】如圖,矩形ABCD的對(duì)角線經(jīng)過原點(diǎn),各邊分別平行于坐標(biāo)軸,點(diǎn)C在反比例函數(shù)y=的圖象上.若點(diǎn)A的坐標(biāo)為(﹣2,﹣3),則k的值為________

【答案】﹣16

【解析】

根據(jù)矩形的對(duì)角線將矩形分成面積相等的兩個(gè)直角三角形,找到圖中的所有矩形及相等的三角形,即可推出S四邊形CEOF=S四邊形HAGO,根據(jù)反比例函數(shù)比例系數(shù)的幾何意義即可求出k2-5k=6,再解出k的值即可.

如圖:

∵四邊形ABCD、HBEO、OECF、GOFD為矩形,

又∵BO為四邊形HBEO的對(duì)角線,OD為四邊形OGDF的對(duì)角線,

SBEO=SBHO,SOFD=SOGD,SCBD=SADB,

SCBD-SBEO-SOFD=SADB-SBHO-SOGD,

S四邊形CEOF=S四邊形HAGO=2×3=6,

xy=k2-5k=6,

解得k=-1k=6.

故答案為:-16.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(11),B(42),C(3,4)

(1)請(qǐng)畫出△ABC向左平移6個(gè)單位長(zhǎng)度后得到的△A1B1C1

(2)請(qǐng)畫出△ABC關(guān)于原點(diǎn)對(duì)稱的△A2B2C2;

(3)Px軸上一動(dòng)點(diǎn),當(dāng)AP+CP有最小值時(shí),求這個(gè)最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直角三角形的判定

1)有一個(gè)角是________________的三角形是直角三角形.

2)有兩個(gè)角________________的三角形是直角三角形.

3)勾股定理的逆定理:如果三角形兩邊的平方和等于________________,那么這個(gè)三角形是直角三角形.

4)如果三角形一邊上的________________等于這邊的一半,那么這個(gè)三角形是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一個(gè)直角三角形紙片放置在平面直角坐標(biāo)系中,點(diǎn)

(1)點(diǎn)為邊上一點(diǎn)(點(diǎn)不與重合),沿將紙片折疊得的對(duì)應(yīng)點(diǎn),邊軸交于點(diǎn)

①如圖1,當(dāng)點(diǎn)剛好落在軸上時(shí),求點(diǎn)的坐標(biāo)

②如圖2,當(dāng)時(shí),若線段軸上移動(dòng)得到線段(線段平移時(shí)不動(dòng)),當(dāng)△AOQ′周長(zhǎng)最小時(shí),求OO′的長(zhǎng)度.

(2)如圖3,若點(diǎn)為邊上一點(diǎn)(點(diǎn)不與重合),沿將紙片折疊得的對(duì)應(yīng)點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,修公路遇到一座山,于是要修一條隧道.為了加快施工進(jìn)度,想在小山的另一側(cè)同時(shí)施工.為了使山的另一側(cè)的開挖點(diǎn)C在AB的延長(zhǎng)線上,設(shè)想過C點(diǎn)作直線AB的垂線L,過點(diǎn)B作一直線(在山的旁邊經(jīng)過),與L相交于D點(diǎn),經(jīng)測(cè)量ABD=135°,BD=800米,求直線L上距離D點(diǎn)多遠(yuǎn)的C處開挖?(≈1.414,精確到1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著中國經(jīng)濟(jì)的快速發(fā)展以及科技水平的飛速提高,中國高鐵正迅速崛起.高鐵大大縮短了時(shí)空距離,改變了人們的出行方式.如圖,A,B兩地被大山阻隔,由A地到B地需要繞行C地,若打通穿山隧道,建成A,B兩地的直達(dá)高鐵,可以縮短從A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后與打通前相比,從A地到B地的路程將約縮短多少公里?(參考數(shù)據(jù):≈1.7,≈1.4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,CDAB邊上的中線,ECD的中點(diǎn),過點(diǎn)CAB的平行線交AE的延長(zhǎng)線于點(diǎn)F,連接BF

(1) 求證:CFAD;

(2) CACB,∠ACB90°,試判斷四邊形CDBF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,DBC延長(zhǎng)線上一點(diǎn),DEAB于點(diǎn)E,EFBC于點(diǎn)F.若CD=3AE,CF=6,則AC的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在中,,點(diǎn)的中點(diǎn),點(diǎn)邊上一點(diǎn).

1)直線垂直于于點(diǎn)于點(diǎn)(如圖1),求證;

2)直線垂直于,垂足為的延長(zhǎng)線于點(diǎn)(如圖2).求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案