【題目】如圖,在數(shù)軸上,點為原點,點表示的數(shù)為,點表示的數(shù)為,且滿足

1A、B兩點對應的數(shù)分別為___________;

2)若將數(shù)軸折疊,使得點與點重合,則原點與數(shù)______表示的點重合.

3)若點A、B分別以4個單位/秒和2個單位/秒的速度相向而行,則幾秒后A、B兩點相距2個單位長度?

4)若點AB以(3)中的速度同時向右運動,點從原點7個單位/秒的速度向右運動,設運動時間為秒,請問:在運動過程中,的值是否會發(fā)生變化?若變化,請用表示這個值;若不變,請求出這個定值.

【答案】1-8;6;(2-2;(31.5秒或2秒后AB兩點相距2個單位長度;(4)不會發(fā)生變化,定值為20.

【解析】

根據(jù)絕對值及平方的非負數(shù)性質(zhì)即可求出a、b的值;(2)根據(jù)ab的值可得AB對折點表示的數(shù),根據(jù)兩點間的距離即可得答案;(3)分兩種情況:①相遇前相距2個單位長度;②相遇后相距2個單位長度;利用距離=時間×速度即可得答案;(4)根據(jù)兩點間距離公式,利用距離=時間×速度用t分別表示出APOB、OP的長,計算的值即可得答案.

1)∵

a+8=0,b-6=0

解得:a=-8,b=6,

故答案為:-86

2)∵a=-8,b=6,將數(shù)軸折疊,使得A點與B點重合,

∴對折點表示的數(shù)是[6+(-8)]÷2=-1

-1與原點的距離是1,

∴原點關(guān)于-1的對稱點表示的數(shù)是-2,即原點O與數(shù)-2表示的點重合,

故答案為:-2

3)①相遇前相距2個單位長度:

t=[6-(-8)-2]÷(4+2)=1.5()

②相遇后相距2個單位長度:

t=[6-(-8)+2]÷(4+2)=2()

綜上所述:1.5秒或2秒后A、B兩點相距2個單位長度.

4AP+2OB-OP的值不會發(fā)生變化.

OP=7tOA=-8+4t,

AP=7t-(-8+4t)=3t+8

OB=6+2t,

AP+2OB-OP=3t+8+2(6+2t)-7t=3t+8+12+4t-7t=20

AP+2OB-OP的值不會發(fā)生變化,定值為20.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】河西中學九年級共有9個班,300名學生,學校要對該年級學生數(shù)學學科學業(yè)水平測試成績進行抽樣分析,請按要求回答下列問題:

收集數(shù)據(jù)

(1)若從所有成績中抽取一個容量為36的樣本,以下抽樣方法中最合理的是

①在九年級學生中隨機抽取36名學生的成績;

②按男、女各隨機抽取18名學生的成績;

③按班級在每個班各隨機抽取4名學生的成績.

整理數(shù)據(jù)

(2)將抽取的36名學生的成績進行分組,繪制頻數(shù)分布表和成績分布扇形統(tǒng)計圖如下.請根據(jù)圖表中數(shù)據(jù)填空:

①C類和D類部分的圓心角度數(shù)分別為 °、 °;

②估計九年級A、B類學生一共有 名.

成績(單位:分)

頻數(shù)

頻率

A類(80~100)

18

B類(60~79)

9

C類(40~59)

6

D類(0~39)

3

分析數(shù)據(jù)

(3)教育主管部門為了解學校教學情況,將河西、復興兩所中學的抽樣數(shù)據(jù)進行對比,得下表:

學校

平均數(shù)(分)

極差(分)

方差

A、B類的頻率和

河西中學

71

52

432

0.75

復興中學

71

80

497

0.82

你認為哪所學校本次測試成績較好,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某校教學樓AB的后面有一建筑物CD,在距離CD的正后方30米的觀測點P處,以22°的仰角測得建筑物的頂端C恰好擋住教學樓的頂端A,而在建筑物CD上距離地面3米高的E處,測得教學樓的頂端A的仰角為45°,求教學樓AB的高度.(參考數(shù)據(jù):sin22° ,cos22°≈,tan22°≈

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,分別是的中點.

求證:四邊形是菱形

如果,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著交通道路的不斷完善,帶動了旅游業(yè)的發(fā)展,某市旅游景區(qū)有A、B、C、D、E等著名景點,該市旅游部門統(tǒng)計繪制出2017年“五一”長假期間旅游情況統(tǒng)計圖,根據(jù)以下信息解答下列問題:

(1)2017年“五一”期間,該市周邊景點共接待游客 萬人,扇形統(tǒng)計圖中A景點所對應的圓心角的度數(shù)是 ,并補全條形統(tǒng)計圖.

(2)根據(jù)近幾年到該市旅游人數(shù)增長趨勢,預計2018年“五一”節(jié)將有80萬游客選擇該市旅游,請估計有多少萬人會選擇去E景點旅游?

(3)甲、乙兩個旅行團在A、B、D三個景點中,同時選擇去同一景點的概率是多少?請用畫樹狀圖或列表法加以說明,并列舉所用等可能的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點是菱形邊上的一個動點,點從點出發(fā),沿的方向勻速運動到停止,過點垂直直線于點,已知,設點走過的路程為,點到直線的距離為(當點與點或點重合時,的值為

小騰根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)隨自變量的變化規(guī)律進行了探究,下面是小騰的探究過程,請補充完整;

1)按照下表中自變量的值進行取點,畫圖,測量,分別得到了以下幾組對應值;

2)在同一平面直角坐標系中,描出補全后的表中各組數(shù)值所對應的點,并畫出函數(shù)的圖像;

3)結(jié)合函數(shù)圖像,解決問題,當點到直線的距離恰為點走過的路程的一半時,點P走過的路程約是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖甲,有兩個形狀完全相同的直角三角形ABC和EFG疊放在一起點A與點E重合),已知AC8 cm,BC6 cm,∠C90°,EG4 cm,∠EGF90°,O是△EFG斜邊上的中點. 如圖乙,若整個△EFG從圖甲的位置出發(fā),以1 cm/s的速度沿射線AB方向平移,在△EFG平移的同時點P從△EFG的頂點G出發(fā),以1 cm/s的速度在直角邊GF上向點F運動當點P到達點F時,點P停止運動△EFG也隨之停止平移. 設運動時間為x(s),FG的延長線交AC于H四邊形OAHP的面積為y(cm2)(提示:不考慮點P與G、F重合的情況).

(1)當x為何值時,OP∥AC?

(2)求y與x之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍;

(3)是否存在某一時刻,使四邊形OAHP面積與△ABC面積的比為若存在,求出x的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,矩形的邊、分別落在軸上,點坐標為,反比例函數(shù)的圖象與邊交于點,與邊交于點,連結(jié),將沿翻折至處,點恰好落在正比例函數(shù)圖象上,則的值是

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】世界杯比賽中,根據(jù)場上攻守形勢,守門員會在門前來回跑動,如果以球門線為基準,向前跑記作正數(shù),返回則記作負數(shù),一段時間內(nèi),某守門員的跑動情況記錄如下(單位:):,,,,,.(假定開始計時時,守門員正好在球門線上)

1)守門員最后是否回到球門線上?

2)守門員在這段時間內(nèi)共跑了多少米?

3)如果守門員離開球門線的距離超過10米(不包括10米),則對方球員挑射極可能造成破門.請問在這一時間段內(nèi),對方球員有幾次挑射破門的機會?

查看答案和解析>>

同步練習冊答案