【題目】在△ABC中,∠C=90°若BC=2,則AB=4,則∠B=____________°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體育用品專賣店銷售7個(gè)籃球和9個(gè)排球的總利潤為355元,銷售10個(gè)籃球和20個(gè)排球的總利潤為650元.
(1)求每個(gè)籃球和每個(gè)排球的銷售利潤;
(2)已知每個(gè)籃球的進(jìn)價(jià)為200元,每個(gè)排球的進(jìn)價(jià)為160元,若該專賣店計(jì)劃用不超過17400元購進(jìn)籃球和排球共100個(gè),且要求籃球數(shù)量不少于排球數(shù)量的一半,請(qǐng)你為專賣店設(shè)計(jì)符合要求的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠A=30°,D是AC邊上的點(diǎn);先將△ABC沿著BD翻折,翻折后△ABD的邊AB交AC于點(diǎn)E;又將△BCE沿著BE翻折,C點(diǎn)恰好落在BD上,此時(shí)∠BEC=78°,則原三角形的∠ABC=度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)D、點(diǎn)E分別是等邊三角形ABC中BC、AB邊的中點(diǎn),AD=5,點(diǎn)F是AD邊上的動(dòng)點(diǎn),則BF+EF的最小值為( )
A.7.5
B.5
C.4
D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,輪船從B處以每小時(shí)60海里的速度沿南偏東20°方向勻速航行,在B處觀測(cè)燈塔A位于南偏東50°方向上,輪船航行40分鐘到達(dá)C處,在C處觀測(cè)燈塔A位于北偏東10°方向上,則C處與燈塔A的距離是( )
A.20海里 B.40海里 C.海里 D.海里
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的證明過程,在每步后的橫線上填寫該步推理的依據(jù). 如圖,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的角平分線,求證:DF∥AB
證明:∵BE是∠ABC的角平分線
∴∠1=∠2
又∵∠E=∠1
∴∠E=∠2
∴AE∥BC
∴∠A+∠ABC=180°
又∵∠3+∠ABC=180°
∴∠A=∠3
∴DF∥AB .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖AB∥CD,EF分別交AB于點(diǎn)F,交CD于點(diǎn)E,EF與DB交于點(diǎn)G,且EA平分∠CEF,∠BFG=70°.
(1)求∠A的度數(shù).
(2)若∠A=∠D,求證:∠AEF=∠G.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果關(guān)于x的方程x2+mx+25=0有兩個(gè)相等的實(shí)數(shù)根,那么m的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“綜合與實(shí)踐”學(xué)習(xí)活動(dòng)準(zhǔn)備制作一組三角形,記這些三角形的三邊分別為a,b,c,并且這些三角形三邊的長度為大于1且小于5的整數(shù)個(gè)單位長度.
(1)用記號(hào)(a,b,c)(a≤b≤c)表示一個(gè)滿足條件的三角形,如(2,3,3)表示邊長分別為2,3,3個(gè)單位長度的一個(gè)三角形.請(qǐng)列舉出所有滿足條件的三角形.
(2)用直尺和圓規(guī)作出三邊滿足a<b<c的三角形(用給定的單位長度,不寫作法,保留作圖痕跡).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com