【題目】如圖,在菱形ABCD中,AB=5,tanD=,點(diǎn)E在BC上運(yùn)動(dòng)(不與B,C重合),將四邊形AECD沿直線AE翻折后,點(diǎn)C落在C′處,點(diǎn)D′落在D處,C′D′與AB交于點(diǎn)F,當(dāng)C′D'⊥AB時(shí),CE長為_____.
【答案】
【解析】
如圖,作AH⊥CD于H,交BC的延長線于G,連接AC′.首先證明EA平分∠BAG,推出,想辦法求出AG,BG,EG,CG即可解決問題.
解:如圖,作AH⊥CD于H,交BC的延長線于G,連接AC′.
由題意:AD=AD′,∠D=∠D′,∠AFD′=∠AHD=90°,
∴△AFD′≌△AHD(AAS),
∴∠FAD′=∠HAD,
∵∠EAD′=∠EAD,
∴∠EAB=∠EAG,
∴(角平分線的性質(zhì)定理,可以用面積法證明)
∵AB∥CD,AH⊥CD,
∴AH⊥AB,
∴∠BAG=90°,
∵∠B=∠D,
∴BG=,
∴BE:EG=AB:AG=4:3,
∴,
在Rt△ADH中,∵tanD=,AD=5,
∴AH=3,CH=4,
∴CH=1,
∵CG∥AD,
,
∴EC=EG﹣CG=.
故答案為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在軸的上方,直角∠BOA繞原點(diǎn)O按順時(shí)針方向旋轉(zhuǎn).若∠BOA的兩邊分別于函數(shù),的圖像交于B、A兩點(diǎn),則∠OAB大小的變化趨勢為 ( )
A. 逐漸變小B. 逐漸變大C. 時(shí)大時(shí)小D. 保持不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AC=4,BC=2,點(diǎn)D在射線AB上,在構(gòu)成的圖形中,△ACD為等腰三角形,且存在兩個(gè)互為相似的三角形,則CD的長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)
如圖,在□ABCD中,以點(diǎn)A為圓心,AB長為半徑畫弧交AD于點(diǎn)F;再分別以點(diǎn)B、F為圓心,大于BF的相同長為半徑畫弧,兩弧交于點(diǎn)P;連接AP并延長交BC于點(diǎn)E,連接EF,則所得四邊形ABEF是菱形.
(1)根據(jù)以上尺規(guī)作圖的過程,求證四邊形ABEF是菱形;
(2)若菱形ABEF的周長為16,AE=4,求∠C的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“為了安全,請勿超速”.如圖,一條公路建成通車,在某直線路段MN限速60千米/小時(shí),為了檢測車輛是否超速,在公路MN旁設(shè)立了觀測點(diǎn)C,從觀測點(diǎn)C測得一小車從點(diǎn)A到達(dá)點(diǎn)B行駛了5秒鐘,已知∠CAN=45°,∠CBN=60°,BC=200米,此車超速了嗎?請說明理由.
(參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等邊△ABC與正方形DEFG如圖1放置,其中D,E兩點(diǎn)分別在AB,BC上,且BD=BE.
(1)求∠DEB的度數(shù);
(2)當(dāng)正方形DEFG沿著射線BC方向以每秒1個(gè)單位長度的速度平移時(shí),CF的長度y隨著運(yùn)動(dòng)時(shí)間變化的函數(shù)圖象如圖2所示,且當(dāng)t=時(shí),y有最小值1;
①求等邊△ABC的邊長;
②連結(jié)CD,在平移的過程中,求當(dāng)△CEF與△CDE同時(shí)為等腰三角形時(shí)t的值;
③從平移運(yùn)動(dòng)開始,到GF恰落在AC邊上時(shí),請直接寫出△CEF外接圓圓心的運(yùn)動(dòng)路徑的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC內(nèi)接于⊙O,且AB=AC,直徑AD交BC于點(diǎn)E,F(xiàn)是OE上的一點(diǎn),使CF∥BD.
(1)求證:BE=CE;
(2)試判斷四邊形BFCD的形狀,并說明理由;
(3)若BC=8,AD=10,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 (a≠0)的對稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2;
②方程 的兩個(gè)根是x1=﹣1,x2=3;
③3a+c>0
④當(dāng)y>0時(shí),x的取值范圍是﹣1≤x<3
⑤當(dāng)x<0時(shí),y隨x增大而增大
其中結(jié)論正確的個(gè)數(shù)是( 。
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一款優(yōu)雅且穩(wěn)定的拋物線型落地?zé)簦阑菽?/span>C為拋物線支架的最高點(diǎn),燈罩D距離地面1.86米,燈柱AB及支架的相關(guān)數(shù)據(jù)如圖2所示.若茶幾擺放在燈罩的正下方,則茶幾到燈柱的距離AE為________米.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com