【題目】如圖1,拋物線yax2+bx+c的圖象與x軸交于A(﹣30)、B10)兩點,與y軸交于點C,且OCOA

1)求拋物線解析式;

2)過直線AC上方的拋物線上一點My軸的平行線,與直線AC交于點N.已知M點的橫坐標為m,試用含m的式子表示MN的長及△ACM的面積S,并求當MN的長最大時S的值;

3)如圖2,D0,﹣2),連接BD,將△OBD繞平面內(nèi)的某點(記為P)逆時針旋轉(zhuǎn)180°得到△OBD′,O、BD的對應點分別為O′、B′、D′.若點B′、D′兩點恰好落在拋物線上,求旋轉(zhuǎn)中心點P的坐標.

【答案】1y=﹣x22x+3;(2MN=﹣m23m(﹣3m0),SACM,m=﹣時,MN最大,此時S;(3P-).

【解析】

1)先求出點A坐標,再運用待定系數(shù)法求解即可;

2)先求出直線AC的解析式,待定點M,N的坐標,用m表示線段MN的長度,運用二次函數(shù)分析其最值即可;

3)根據(jù)中心對稱的性質(zhì),明確BD′與BD平行且相等,待定點B′、D′的坐標,代入拋物線解析式求解即可得出B′、D′的坐標,而后運用中點公式求出中心的坐標即可;

解:(1)由A(﹣30),且OCOA可得

A(﹣30

設(shè)拋物線解析式為yax+3)(x1),

C0,3)代入解析式得,﹣3a3,解得a=﹣1,

∴拋物線解析式為y=﹣x22x+3

2)如圖1,

設(shè)直線AC解析式為ykx+d

A(﹣3,0),C0,3),

,

解得 ,

∴直線AC解析式為yx+3,

設(shè)Mm,﹣m22m+3),則Nm,m+3),則MN=﹣m22m+3﹣(m+3)=﹣m23m(﹣3m0),

SACMSAMN+SCMNMN×3,

MN=﹣m23m=﹣+

a=﹣10,﹣3m=﹣1.50

m=﹣時,MN最大,此時S;

3)如圖2中,旋轉(zhuǎn)180°后,對應線段互相平行且相等,則BDBD′互相平行且相等.

OB′=OB1,OD′=OD2

設(shè)B′(t,﹣t22t+3),則D′(t+1,﹣t22t+3+2

D′在拋物線上,則﹣(t+122t+1+3=﹣t22t+3+2,

解得,t=-,則B′的坐標為(-,),

P是點B1,0)和點B′(-),的對稱中心,

,,

P-,).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】我市智慧閱讀活動正如火如茶地進行.某班學習委員為了解11月份全班同學課外閱讀的情況,調(diào)查了全班同學11月份讀書的冊數(shù),并根據(jù)調(diào)查結(jié)果繪制了如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖:

1)扇形統(tǒng)計圖中“3冊”部分所對應的圓心角的度數(shù)是 ,并把條形統(tǒng)計圖補充完整;

2)該班的學習委員11月份的讀書冊數(shù)為4冊,若該班的班主任從11月份讀書4冊的學生中隨機抽取兩名同學參加學校舉行的知識競賽,請用列表法或畫樹狀圖求恰好有一名同學是學習委員的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca≠0)的圖象如圖,則下列結(jié)論錯誤的是( 。

A. 4a+2b+c0B. abc0C. bacD. 3b2c

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題提出:

n個環(huán)環(huán)相扣的圓環(huán)形成一串線型鏈條,當只斷開其中的kkn)個環(huán),要求第一次取走一個環(huán),以后每次都只能比前一次多得一個環(huán),則最多能得到的環(huán)數(shù)n是多少呢?

問題探究:

為了找出nk之間的關(guān)系,我們運用一般問題特殊化的方法,從特殊到一般,歸納出解決問題的方法.

探究一:k=1,即斷開鏈條其中的1個環(huán),最多能得到幾個環(huán)呢?

n=1,2,3時,斷開任何一個環(huán),都能滿足要求,分次取走;

n=4時,斷開第二個環(huán),如圖①,第一次取走1環(huán);第二次退回1環(huán)換取2環(huán),得2個環(huán);第三次再取回1環(huán),得3個環(huán);第四次再取另1環(huán),得4個環(huán),按要求分4次取走.

n=5,6,7時,如圖②,圖③,圖④方式斷開,可以用類似上面的方法,按要求分5,6,7次取走.

n=8時,如圖⑤,無論斷開哪個環(huán),都不可能按要求分次取走.

所以,當斷開1個環(huán)時,從得到更多環(huán)數(shù)的角度考慮,把鏈條分成3部分,分別是1環(huán)、2環(huán)和4環(huán),最多能得到7個環(huán).

即當k=1時,最多能得到的環(huán)數(shù)n=1+2+4=1+2×3=1+2×22-1=7.

探究二:k=2,即斷開鏈條其中的2個環(huán),最多能得到幾個環(huán)呢?

從得到更多環(huán)數(shù)的角度考慮,按圖⑥方式斷開,把鏈條分成5部分,按照類似探究一的方法,按要求分1,2,…23次取走.

所以,當斷開2個環(huán)時,把鏈條分成5部分,分別是1環(huán)、1環(huán)、3環(huán)、6環(huán)、12環(huán),最多能得到23個環(huán).

即當k=2時,最多能得到的環(huán)數(shù)n=1+1+3+6+12=2+3×7=2+3×23-1=23.

探究三:k=3,即斷開鏈條其中的3個環(huán),最多能得到幾個環(huán)呢?

從得到更多環(huán)數(shù)的角度考慮,按圖⑦方式斷開,把鏈條分成7部分,按照類似前面探究的方法,按要求分1,2,…63次取走.

所以,當斷開3個環(huán)時,從得到更多環(huán)數(shù)的角度考慮,把鏈條分成7部分,分別是1環(huán)、1環(huán)、1環(huán)、4環(huán)、8環(huán)、16環(huán)、32環(huán),最多能得到63個環(huán).

即當k=3時,最多能得到的環(huán)數(shù)n=1+1+1+4+8+16+32=3+4×15=3+4×24-1=63.

探究四:k=4,即斷開鏈條其中的4個環(huán),最多能得到幾個環(huán)呢?

按照類似前面探究的方法,當斷開4個環(huán)時,從得到更多環(huán)數(shù)的角度考慮,把鏈條分成 部分,分別為 ,最多能得到的環(huán)數(shù)n= .請畫出如圖⑥的示意圖.

模型建立:

n個環(huán)環(huán)相扣的圓環(huán)形成一串線型鏈條,斷開其中的kkn)個環(huán),從得到更多環(huán)數(shù)的角度考慮,把鏈條分成 部分,

分別是:11、1……1、k+1、 ……、 ,最多能得到的環(huán)數(shù)n =

實際應用:

一天一位財主對雇工說:你給我做兩年的工,我每天付給你一個銀環(huán).不過,我用一串環(huán)環(huán)相扣的線型銀鏈付你工錢,但你最多只能斷開銀鏈中的6個環(huán).如果你無法做到每天取走一個環(huán),那么你就得不到這兩年的工錢,如果銀鏈還有剩余,全部歸你!你愿意嗎?

聰明的你是否可以運用本題的方法通過計算幫助雇工解決這個難題,雇工最多能得到總環(huán)數(shù)為多少環(huán)的銀鏈?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知y關(guān)于x二次函數(shù)yx2﹣(2k+1x+k2+5k+9)與x軸有交點.

1)求k的取值范圍;

2)若x1,x2是關(guān)于x的方程x2﹣(2k+1x+k2+5k+9)=0的兩個實數(shù)根,且x12+x2239,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A在反比例函數(shù)y(x0)的圖象上,點B在反比例函數(shù)y(x0)的圖象上,ABx軸,BCx軸,垂足為C,連接AC,若△ABC的面積為2,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形ABCD的頂點A的坐標為(11),點Bx軸正半軸上,點D在第三象限的雙曲線y上,過點CCEx軸交雙曲線于點E,連接BE,則△BCE的面積為( )

A. 5B. 6C. 7D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列圖形中不一定是相似圖形的是( )

A. 兩個等邊三角形B. 兩個等腰直角三角形

C. 兩個正方形D. 兩個長方形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,以原點O為圓心的圓過點A(13,0),直線y=kx3k+4與O交于B、C兩點,則弦BC的長的最小值為( ).

A.22 B.24 C.10 D.12

查看答案和解析>>

同步練習冊答案