【題目】如圖,△ABC中,AB>AC,∠CAD為△ABC的外角,觀察圖中尺規(guī)作圖的痕跡,則下列結(jié)論錯(cuò)誤的是( )
A.∠DAE=∠B
B.∠EAC=∠C
C.AE∥BC
D.∠DAE=∠EAC
【答案】D
【解析】解:根據(jù)圖中尺規(guī)作圖的痕跡,可得∠DAE=∠B,故A選項(xiàng)正確, ∴AE∥BC,故C選項(xiàng)正確,
∴∠EAC=∠C,故B選項(xiàng)正確,
∵AB>AC,
∴∠C>∠B,
∴∠CAE>∠DAE,故D選項(xiàng)錯(cuò)誤,
故選:D.
【考點(diǎn)精析】掌握平行線的判定與性質(zhì)和三角形的外角是解答本題的根本,需要知道由角的相等或互補(bǔ)(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(bǔ)(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì);三角形一邊與另一邊的延長線組成的角,叫三角形的外角;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2﹣2x+3 的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C
(1)求A、B、C的坐標(biāo);
(2)過拋物線上一點(diǎn)F作y軸的平行線,與直線AC交于點(diǎn)G.若FG= AC,求點(diǎn)F的坐標(biāo);
(3)E(0,﹣2),連接BE.將△OBE繞平面內(nèi)的某點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到△O′B′E′,O、B、E的對應(yīng)點(diǎn)分別為O′、B′、E′.若點(diǎn)B′、E′兩點(diǎn)恰好落在拋物線上,求點(diǎn)B′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y= 的圖象相交于點(diǎn)A(﹣4,﹣2),B(m,4),與y軸相交于點(diǎn)C.
(1)求此反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)求點(diǎn)C的坐標(biāo)及△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,EB為半圓O的直徑,點(diǎn)A在EB的延長線上,AD切半圓O于點(diǎn)D,BC⊥AD于點(diǎn)C,AB=2,半圓O的半徑為2,則BC的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,Rt△ABC,∠ACB=90°,BC=6,AC=8,O為BC延長線上一點(diǎn),CO=3,過O,A作直線l,將l繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),l與AB交于點(diǎn)D,與AC交于點(diǎn)E,當(dāng)l與OB重合時(shí),停止旋轉(zhuǎn);過D作DM⊥AE于M,設(shè)AD=x,S△ADE=S.
(1)用含x的代數(shù)式表示DM,AM的長;
(2)當(dāng)直線l過AC中點(diǎn)時(shí),求x的值;
(3)用含x的代數(shù)式表示AE的長;
(4)求S與x之間的函數(shù)關(guān)系式;
(5)當(dāng)x為多少時(shí),DO⊥AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)分別為A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).
(1)把△ABC向上平移3個(gè)單位后得到△A1B1C1 , 請畫出△A1B1C1并寫出點(diǎn)B1的坐標(biāo);
(2)已知點(diǎn)A與點(diǎn)A2(2,1)關(guān)于直線l成軸對稱,請畫出直線l及△ABC關(guān)于直線l對稱的△A2B2C2 , 并直接寫出直線l的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
(1)計(jì)算: ÷ ;
(2)如圖,正方形ABCD中,點(diǎn)E,F(xiàn),G分別在AB,BC,CD上,且∠EFG=90°.求證:△EBF∽△FCG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在開展“經(jīng)典閱讀”活動(dòng)中,某學(xué)校為了解全校學(xué)生利用課外時(shí)間閱讀的情況,學(xué)校團(tuán)委隨機(jī)抽取若干名學(xué)生,調(diào)查他們一周的課外閱讀時(shí)間,并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)表.根據(jù)圖表信息,解答下列問題: 頻率分布表
閱讀時(shí)間 | 頻數(shù) | 頻率 |
1≤x<2 | 18 | 0.12 |
2≤x<3 | a | m |
3≤x<4 | 45 | 0.3 |
4≤x<5 | 36 | n |
5≤x<6 | 21 | 0.14 |
合計(jì) | b | 1 |
(1)填空:a= , b= , m= , n=;
(2)將頻數(shù)分布直方圖補(bǔ)充完整(畫圖后請標(biāo)注相應(yīng)的頻數(shù));
(3)若該校由3000名學(xué)生,請根據(jù)上述調(diào)查結(jié)果,估算該校學(xué)生一周的課外閱讀時(shí)間不足三小時(shí)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,BD、CE是高,BD與CE相交于點(diǎn)O
(1)求證:OB=OC;
(2)若∠ABC=50°,求∠BOC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com