作拋物線C1關(guān)于x軸對稱的拋物線C2,將拋物線C2向左平移2個單位,向上平移1個單位,得到的拋物線C的函數(shù)解析式是y=2(x+1)2-1,則拋物線C1所對應(yīng)的函數(shù)解析式是________.

y=-2(x-1)2+2
分析:根據(jù)題意易得拋物線C的頂點,進(jìn)而可得到拋物線B的坐標(biāo),根據(jù)頂點式及平移前后二次項的系數(shù)不變可得拋物線B的解析式,而根據(jù)關(guān)于x軸對稱的兩條拋物線的頂點的橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),二次項系數(shù)互為相反數(shù)可得到拋物線C1所對應(yīng)的函數(shù)表達(dá)式.
解答:根據(jù)題意易得拋物線C的頂點為(-1,-1),
∵是向左平移2個單位,向上平移1個單位得到拋物線C的,
∴拋物線B的坐標(biāo)為(1,-2),
可設(shè)拋物線B的坐標(biāo)為y=2(x-h)2+k,代入得:y=2(x-1)2-2,
易得拋物線A的二次項系數(shù)為-2,頂點坐標(biāo)為(1,2),
∴拋物線A的解析式為y=-2(x-1)2+2,
故答案為y=-2(x-1)2+2.
點評:本題主要考查了討論兩個二次函數(shù)的圖象的平移問題,只需看頂點坐標(biāo)是如何平移得到的即可,關(guān)于x軸對稱的兩條拋物線的頂點的橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),二次項系數(shù)互為相反數(shù),難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖所示,拋物線c1:y=ax2+bx+c的頂點A在x軸的正半軸上,并與y軸交于點B,OA=
3
,AB=2
3
,拋物線c2與拋物線c1關(guān)于y軸對稱.
(1)求拋物線c1的函數(shù)解析式,并直接寫出拋物線c2的函數(shù)解析式;
(2)設(shè)l是拋物線c2的對稱軸,P是l上的一點,求當(dāng)△PAB的周長最小時點P的坐標(biāo);
(3)在拋物線c1上是否存在點D,過點D作DC⊥AB于C,使得△DCB與△AOB相似?如果存在,請直接寫出點P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•和平區(qū)一模)在平面直角坐標(biāo)系中,O為坐標(biāo)原點,已知拋物線C1:y=x2,點A(2,4).
(Ⅰ)求直線OA的解析式;
(Ⅱ)直線x=2與x軸相交于點B,將拋物線C1從點O沿OA方向平移,與直線x=2交于點P,頂點M到A點時停止移動,設(shè)拋物線頂點M的橫坐標(biāo)為m.
①當(dāng)m為何值時,線段PB最短?
②當(dāng)線段PB最短時,相應(yīng)的拋物線上是否存在點Q,使△QMA的面積與△PMA的面積相等?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由;
(Ⅲ)將拋物線C1作適當(dāng)?shù)钠揭,得拋物線C2:y=x2-x+c,若點D(x1,y1),E(x2,y2)在拋物線C2上,且D、E兩點關(guān)于坐標(biāo)原點成中心對稱,求c的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知,如圖所示,拋物線c1:y=ax2+bx+c的頂點A在x軸的正半軸上,并與y軸交于點B,OA=數(shù)學(xué)公式,AB=數(shù)學(xué)公式,拋物線c2與拋物線c1關(guān)于y軸對稱.
(1)求拋物線c1的函數(shù)解析式,并直接寫出拋物線c2的函數(shù)解析式;
(2)設(shè)l是拋物線c2的對稱軸,P是l上的一點,求當(dāng)△PAB的周長最小時點P的坐標(biāo);
(3)在拋物線c1上是否存在點D,過點D作DC⊥AB于C,使得△DCB與△AOB相似?如果存在,請直接寫出點P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線C1:y=(x+1)2-4的頂點為P,與x軸的交點為A、B(A左B右),將拋物線C1關(guān)于x軸作軸對稱變換,再將變換后的拋物線沿y軸的正方向、x軸的正方向都平移.m個單位(m>l),得到拋物線C2,拋物線C2的頂點為Q.
作業(yè)寶
(1)求m=3時,拋物線C2的解析式;
(2)根據(jù)下列條件分別求m:
①如圖1,若PQ正好被y軸平分,求m的值;
②如圖2,若PQ經(jīng)過坐標(biāo)原點,求m的值.
(3)如圖3,若拋物線C2的頂點Q關(guān)于直線PA的對稱點Q′恰好落在x軸上,試求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣東省深圳市寶安區(qū)中考數(shù)學(xué)三模試卷(解析版) 題型:解答題

已知,如圖所示,拋物線c1:y=ax2+bx+c的頂點A在x軸的正半軸上,并與y軸交于點B,OA=,AB=,拋物線c2與拋物線c1關(guān)于y軸對稱.
(1)求拋物線c1的函數(shù)解析式,并直接寫出拋物線c2的函數(shù)解析式;
(2)設(shè)l是拋物線c2的對稱軸,P是l上的一點,求當(dāng)△PAB的周長最小時點P的坐標(biāo);
(3)在拋物線c1上是否存在點D,過點D作DC⊥AB于C,使得△DCB與△AOB相似?如果存在,請直接寫出點P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案