【題目】甲、乙二人在一環(huán)形場地上從A點(diǎn)同時同向勻速跑步,甲的速度是乙的倍,4分鐘兩人首次相遇,此時乙還需要跑300米才跑完第一圈,求甲、乙二人的速度及環(huán)形場地的周長列方程組求解
【答案】乙的速度為150米分,甲的速度為375米分,環(huán)形場地的周長為900米.
【解析】
試題由“4分鐘后兩人首次相遇”,可知跑步4分鐘后,甲比乙多跑一圈,即可得到相等關(guān)系;設(shè)乙的速度為x米/分,則甲的速度是2.5x米/分,根據(jù)等量關(guān)系列出方程進(jìn)行求解,即可得到乙和甲的速度;然后由乙跑了4分鐘之后還差300米便可跑完一整圈,即可求出場地的周長.
解:設(shè)乙的速度為x m/min,
則甲的速度為2.5x m/min.
由題意,得2.5x×4-4x=4x+300.
解得x=150.
所以2.5x=2.5×150=375,
4x+300=4×150+300=900.
答:甲、乙兩人的速度分別為375 m/min.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在△AFD和△CEB中,點(diǎn)A、E、F、C在同一條直線上.有下面四個論斷:
(1)AD=CB,(2)AE=CF,(3)∠B=∠D,(4)AD∥BC.
請用其中三個作為條件,余下一個作為結(jié)論,進(jìn)行證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品經(jīng)銷店欲購進(jìn)A、B兩種紀(jì)念品,用320元購進(jìn)的A種紀(jì)念品與用400元購進(jìn)的B種紀(jì)念品的數(shù)量相同,每件B種紀(jì)念品的進(jìn)價比A種紀(jì)念品的進(jìn)價貴10元.
(1)求A、B兩種紀(jì)念品每件的進(jìn)價分別為多少?
(2)若該商店A種紀(jì)念品每件售價45元,B種紀(jì)念品每件售價60元,這兩種紀(jì)念品共購進(jìn)200件,這兩種紀(jì)念品全部售出后總獲利不低于1600元,求A種紀(jì)念品最多購進(jìn)多少件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊中,厘米,厘米.如果點(diǎn)以厘米/秒的速度運(yùn)動,如果點(diǎn)在線段上由點(diǎn)向點(diǎn)運(yùn)動,點(diǎn)在線段上由點(diǎn)向點(diǎn)運(yùn)動.它們同時出發(fā),若點(diǎn)的運(yùn)動速度與點(diǎn)的運(yùn)動速度相等.
(1)經(jīng)過秒后,和是否全等?請說明理由.
(2)當(dāng)兩點(diǎn)的運(yùn)動時間為多少時,是一個直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AC=BC=10 cm,AB=12 cm,點(diǎn)D是AB的中點(diǎn),連結(jié)CD,動點(diǎn)P從點(diǎn)A出發(fā),沿A→C→B的路徑運(yùn)動,到達(dá)點(diǎn)B時運(yùn)動停止,速度為每秒2 cm,設(shè)運(yùn)動時間為秒.
(1)求CD的長;
(2)當(dāng)為何值時,△ADP是直角三角形?
(3)直接寫出:當(dāng)為何值時,△ADP是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AM∥CN,點(diǎn)B為平面內(nèi)一點(diǎn),AB⊥BC于B.
(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關(guān)系 ;
(2)如圖2,過點(diǎn)B作BD⊥AM于點(diǎn)D,∠BAD與∠C有何數(shù)量關(guān)系,并說明理由;
(3)如圖3,在(2)問的條件下,點(diǎn)E,F在DM上,連接BE,BF,CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=5∠DBE,求∠EBC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】泰興市為進(jìn)一步改善生態(tài)環(huán)境決定對街道進(jìn)行綠化建設(shè),為此準(zhǔn)備購進(jìn)甲、乙兩種樹木、已知甲種樹木的單價為元,乙種樹木的單價為元.
(1)若街道購買甲、乙兩種樹木共花費(fèi)元,其中,乙種樹木是甲種樹木的一半多棵,請求出該街道購買的甲、乙兩種樹木各多少棵;
(2)相關(guān)資料表明:甲種樹木的成活率為,乙種樹木的成活率為.現(xiàn)街道購買甲、乙兩種樹木共棵,為了使這批樹木的總成活率不低于,則甲種樹木至多購買多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:是等腰三角形,其底邊是BC,點(diǎn)D在直線AB上,E是直線BC上一點(diǎn),且.
如圖,點(diǎn)D在線段AB上,若,判斷EB與AD的數(shù)量關(guān)系不必證明;
若點(diǎn)D在線段AB的延長線上,其它條件不變如圖,的結(jié)論是否成立,請說明理由;
若,其它條件不變,EB與AD的數(shù)量關(guān)系是怎樣的?用含有的關(guān)系式直接寫出結(jié)論,不要求寫解答過程
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com