【題目】將矩形OABC如圖放置,O為原點(diǎn).若點(diǎn)A(﹣1,2),點(diǎn)B的縱坐標(biāo)是,則點(diǎn)C的坐標(biāo)是(  )

A. (4,2) B. (2,4) C. ,3) D. (3,

【答案】D

【解析】

過點(diǎn)A作AE⊥x軸于點(diǎn)E,過點(diǎn)B作BF⊥⊥x軸于點(diǎn)F,過點(diǎn)A作AN⊥BF于點(diǎn)N,

過點(diǎn)C作CM⊥x軸于點(diǎn)M,

∵∠EAO+∠AOE=90°,∠AOE+∠MOC=90°,

∴∠EAO=∠COM,

又∵∠AEO=∠CMO,

∴∠AEO∽△COM,

,

∵∠BAN+∠OAN=90°,∠EAO+∠OAN=90°,

∴∠BAN=∠EAO=∠COM,

在△ABN和△OCM中

,

∴△ABN≌△OCM(AAS),

∴BN=CM,

∵點(diǎn)A(1,2),點(diǎn)B的縱坐標(biāo)是,

∴BN=,

∴CM=

∴MO=3,

∴點(diǎn)C的坐標(biāo)是:(3,).

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,對(duì)角線ACBD交于點(diǎn)O,AG平分∠BACBDGDEAG于點(diǎn)H.下列結(jié)論:①AD2AE:②FDAG;③CFCD:④四邊形FGEA是菱形;⑤OFBE,正確的有(

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(x1y1),點(diǎn)Q的坐標(biāo)為(x2y2),且x1≠x2,y1≠y2.若P,Q為某個(gè)矩形的兩個(gè)頂點(diǎn),且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為點(diǎn)P,Q相關(guān)矩形,下圖①為點(diǎn)PQ相關(guān)矩形的示意圖.

已知點(diǎn)A的坐標(biāo)為(1,0),

1)若點(diǎn)B的坐標(biāo)為(3,1),求點(diǎn)A,B相關(guān)矩形的面積;

2)點(diǎn)C在直線x=3上,若點(diǎn)A,C相關(guān)矩形為正方形,求直線AC的表達(dá)式;

3)若點(diǎn)D的坐標(biāo)為(42),將直線y=2x+b平移,當(dāng)它與點(diǎn)A,D相關(guān)矩形沒有公共點(diǎn)時(shí),求出b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市教研室的數(shù)學(xué)調(diào)研小組對(duì)老師在講評(píng)試卷中學(xué)生參與的深度與廣度進(jìn)行評(píng)調(diào)查,其評(píng)價(jià)項(xiàng)目為主動(dòng)質(zhì)疑”、“獨(dú)立思考”、“專注聽講”、“講解題目四項(xiàng),該調(diào)研小組隨機(jī)抽取了若干名初中九年級(jí)學(xué)生的參與情況,繪制成如圖所示的頻數(shù).

分布直方圖和扇形統(tǒng)計(jì)圖(均不完整),請(qǐng)根據(jù)圖中所給信息解答下列問題

(1)在這次評(píng)價(jià)中,一共抽查了   名學(xué)生;

(2)在扇形統(tǒng)計(jì)圖中,項(xiàng)目主動(dòng)質(zhì)疑所在的扇形的圓心角的度數(shù)為   度;

(3)請(qǐng)將頻數(shù)分布直方圖補(bǔ)充完整;

(4)如果全市有60000名九年級(jí)學(xué)生,那么在試卷評(píng)講課中,獨(dú)立思考的九年級(jí)學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用指定方法解下列一元二次方程.

1x2360(直接開平方法)

2x24x2(配方法)

32x25x+10(公式法)

4)(x+12+8x+1+160(因式分解法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知菱形ABCD的兩條對(duì)角線分別為68M、N分別是邊BCCD的中點(diǎn),P是對(duì)角線BD上一點(diǎn),則PM+PN的最小值=___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知樓房旁邊有一池塘,池塘中有一電線桿米,在池塘邊處測得電線桿頂端的仰角為,樓房頂點(diǎn)的仰角為,又在池塘對(duì)面的處,觀測到,,在同一直線上時(shí),測得電線桿頂端

的仰角為. (注:tan75=2+)

(1)求池塘邊,兩點(diǎn)之間的距離;

(2)求樓房的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)ykxb的圖象與反比例函數(shù)的圖象交于AB兩點(diǎn),且點(diǎn)A的橫坐標(biāo)和點(diǎn)B的縱坐標(biāo)都是-2.

求:(1)一次函數(shù)的解析式;

(2)△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:ABC中,∠ACB=90°,ACBC

(1)如圖1,點(diǎn)DBC的延長線上,連AD,過BBEADE,交AC于點(diǎn)F.求證:ADBF;

(2)如圖2,點(diǎn)D在線段BC上,連AD,過AAEAD,且AEAD,連BEACF,連DE,問BDCF有何數(shù)量關(guān)系,并加以證明;

(3)如圖3,點(diǎn)DCB延長線上,AEADAEAD,連接BE、AC的延長線交BE于點(diǎn)M,若AC=3MC,請(qǐng)直接寫出的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案