在平面直角坐標系中,將點P(2,3)繞原點O順時針旋轉(zhuǎn)90°后得到點P′,則點P′的坐標是( )
A.(-2,3)
B.(3,-2)
C.(-3,2)
D.(2,-3)
【答案】分析:如圖,過P、P′兩點分別作x軸,y軸的垂線,垂足為A、B,由旋轉(zhuǎn)90°可知,△OPA≌△OP′B,則P′B=PA=3,BO=OA=2,由此確定點P′的坐標.
解答:解:如圖,過P、P′兩點分別作x軸,y軸的垂線,垂足為A、B,
∵線段OP繞點O順時針旋轉(zhuǎn)90°,
∴∠POP′=∠AOB=90°,
∴∠AOP=∠P′OB,且OP=OP′,∠PAO=∠P′BO=90°,
∴△OAP≌△OBP′,即P′B=PA=3,BO=OA=2,
∴P′(3,-2).
故選B.
點評:本題考查了點的坐標與旋轉(zhuǎn)變換的關(guān)系.關(guān)鍵是根據(jù)旋轉(zhuǎn)的條件,確定全等三角形.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

28、在平面直角坐標系中,點P到x軸的距離為8,到y(tǒng)軸的距離為6,且點P在第二象限,則點P坐標為
(-6,8)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、在平面直角坐標系中,點P1(a,-3)與點P2(4,b)關(guān)于y軸對稱,則a+b=
-7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系中,有A(2,3)、B(3,2)兩點.
(1)請再添加一點C,求出圖象經(jīng)過A、B、C三點的函數(shù)關(guān)系式.
(2)反思第(1)小問,考慮有沒有更簡捷的解題策略?請說出你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,開口向下的拋物線與x軸交于A、B兩點,D是拋物線的頂點,O為精英家教網(wǎng)坐標原點.A、B兩點的橫坐標分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數(shù)解析式;
(2)作AC⊥AD,AC交拋物線于點C,求點C的坐標及直線AC的函數(shù)解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點P,使△APC的面積最大?如果存在,請求出點P的坐標和△APC的最大面積;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、在平面直角坐標系中,把一個圖形先繞著原點順時針旋轉(zhuǎn)的角度為θ,再以原點為位似中心,相似比為k得到一個新的圖形,我們把這個過程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點O順時針旋轉(zhuǎn)的角度為90°,再以原點為位似中心,相似比為2得到一個新的圖形△A1B1C1,可以把這個過程記為【90°,2】變換.
(1)在圖中畫出所有符合要求的△A1B1C1;
(2)若△OMN的頂點坐標分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過【θ,k】變換后得到△O′M′N′,若點M的對應(yīng)點M′的坐標為(-1,-2),則θ=
0°(或360°的整數(shù)倍)
,k=
2

查看答案和解析>>

同步練習冊答案