【題目】如圖,拋物線y=x22x+3的圖象與x軸交于A.B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.
(1)求點A. B.C的坐標;
(2)判斷以點A、C、D為頂點的三角形的形狀,并說明理由;
(3)點M(m,0)為線段AB上一點(點M不與點A.B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N,可得矩形PQNM.如圖,點P在點Q左邊,試用含m的式子表示矩形PQNM的周長.
【答案】(1) A(-3,0),B(1,0);(2)直角三角形;理由見解析;(3)矩形PMNQ的周長.
【解析】
(1)通過解析式即可求出C的坐標,然后令y=0解出方程得解,即可求出A、B的坐標
(2)分求出三角形三邊,會發(fā)現(xiàn)其滿足勾股定理,所以是直角三角形
(3)根據(jù)拋物線可以得出對稱軸,之后用m表示出PM以及MN的長度,之后便可求周長
(1)由拋物線可知,C(0,3)
令y=0,則
解得:或
∴A(-3,0),B(1,0)
(2)直角三角形
由拋物線可知,對稱軸,且點D坐標為(﹣1, 4)
又因為點A、B、C坐標分別為(-3,0),(1,0) ,(0,3)
故根據(jù)勾股定理得:;;
所以
所以三角形是直角三角形
(3)由拋物線可知,對稱軸
∵M(m,0)
∴,
∴矩形PMNQ的周長=2(PM+MN)=
.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形中,,P為CD邊上的一點,過P點作BP的垂線交AD于點E,交BC的延長線于點F.
(1)判斷線段DE、CF、CP之間的數(shù)量關系,并說明理由.
(2)若,,寫出y與x之間的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,中,,,是由繞點按順時針方向旋轉()得到的,連接,相交于點.
(1)求證:;
(2)當四邊形為菱形時,求的長.
(3)若順時針方向旋轉,猜想四邊形是菱形嗎?若是,請寫出證明過程;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=5cm,BC=7cm.點P從點A開始向點B以1cm/s的速度移動,點Q從點B開始沿邊BC向點C以2cm/s的速度移動.如果點P,Q分別從點A,B同時出發(fā),那么(1)經過幾秒后,△PBQ的面積為4cm2?
(2)并通過計算回答△PBQ的面積能否達到8cm2?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將拋物線y=x2+2x+8的圖象x軸上方的部分沿x軸折到x軸下方,圖象的其余部分不變,得到一個新圖象(實線部分);點P(a,ka-1)在該函數(shù)上,若這樣的點P恰好有3個,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,點M從點D出發(fā),以每秒2個單位長度的速度向點A運動,同時,點N從點B出發(fā),以每秒1個單位長度的速度向點C運動.其中一個動點到達終點時,另一個動點也隨之停止運動.過點N作NP⊥AD于點P,連接AC交NP于點Q,連接MQ.設運動時間為t秒.
(1)AM= ,AP= .(用含t的代數(shù)式表示)
(2)當四邊形ANCP為平行四邊形時,求t的值
(3)如圖2,將△AQM沿AD翻折,得△AKM,是否存在某時刻t,
①使四邊形AQMK為為菱形,若存在,求出t的值;若不存在,請說明理由
②使四邊形AQMK為正方形,求 出AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)y1=kx+b與反比例函數(shù)y2 =圖象在第一、第三象限分別交于A(3,4),B(a,-2)兩點,直線AB與y軸,x軸分別交于C,D兩點.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)比較線段AD、BC大小,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD,∠A=60°,AB=6,點E,F(xiàn)分別是AB,BC邊上沿某一方向運動的點,且DE=DF,當點E從A運動到B時,線段EF的中點O運動的路程為_____.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com