【題目】如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD。理由如下:
∵∠1=∠2(已知)
且∠1=∠4( )
∴∠2=∠4(等量代換)
∴CE∥BF( )
∴∠ =∠BFD( )
又∵∠B=∠C(已知)
∴ (等量代換)
∴AB∥CD( )
【答案】對頂角相等;同位角相等,兩直線平行;C;兩直線平行,同位角相等;∠B=∠BFD;內(nèi)錯角相等,兩直線平行
【解析】
首先確定∠1=∠4是對頂角,利用等量代換,求得∠2=∠CGD,則可根據(jù):同位角相等,兩直線平行,證得:CE∥BF,又由兩直線平行,同位角相等,證得角相等,易得:∠BFD=∠B,則利用內(nèi)錯角相等,兩直線平行,即可證得:AB∥CD.
解:∵∠1=∠2(已知),
且∠1=∠4(對頂角相等),
∴∠2=∠4(等量代換),
∴CE∥BF(同位角相等,兩直線平行),
∴∠C=∠BFD(兩直線平行,同位角相等),
又∵∠B=∠C(已知),
∴∠BFD=∠B(等量代換),
∴AB∥CD(內(nèi)錯角相等,兩直線平行).
故答案為:對頂角相等;同位角相等,兩直線平行;C;兩直線平行,同位角相等;∠B=∠BFD;內(nèi)錯角相等,兩直線平行
科目:初中數(shù)學(xué) 來源: 題型:
【題目】樹葉有關(guān)的問題
如圖,一片樹葉的長是指沿葉脈方向量出的最長部分的長度(不含葉柄),樹葉的寬是指沿與主葉脈垂直方向量出的最寬處的長度,樹葉的長寬比是指樹葉的長與樹葉的寬的比值。
某同學(xué)在校園內(nèi)隨機收集了A樹、B樹、C樹三棵的樹葉各10片,通過測量得到這些樹葉的長y(單位:cm),寬x(單位:cm)的數(shù)據(jù),計算長寬比,理如下:
表1 A樹、B樹、C樹樹葉的長寬比統(tǒng)計表
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
A樹樹葉的長寬比 | 4.0 | 4.9 | 5.2 | 4.1 | 5.7 | 8.5 | 7.9 | 6.3 | 7.7 | 7.9 |
B樹樹葉的長寬比 | 2.5 | 2.4 | 2.2 | 2.3 | 2.0 | 1.9 | 2.3 | 2.0 | 1.9 | 2.0 |
C樹樹葉的長寬比 | 1.1 | 1.2 | 1.2 | 0.9 | 1.0 | 1.0 | 1.1 | 0.9 | 1.0 | 1.3 |
表1 A樹、B樹、C樹樹葉的長寬比的平均數(shù)、中位數(shù)、眾數(shù)、方差統(tǒng)計表
平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | |
A樹樹葉的長寬比 | 6.2 | 6.0 | 7.9 | 2.5 |
B樹樹葉的長寬比 | 2.2 | 0.38 | ||
C樹樹葉的長寬比 | 1.1 | 1.1 | 1.0 | 0.02 |
A樹、B樹、C樹樹葉的長隨變化的情況
解決下列問題:
(1)將表2補充完整;
(2)①小張同學(xué)說:“根據(jù)以上信息,我能判斷C樹樹葉的長、寬近似相等。”
②小李同學(xué)說:“從樹葉的長寬比的平均數(shù)來看,我認(rèn)為,下圖的樹葉是B樹的樹葉。”
請你判斷上面兩位同學(xué)的說法中,誰的說法是合理的,誰的說法是不合理的,并給出你的理由;
(3)現(xiàn)有一片長103cm,寬52cm的樹葉,請將該樹葉的數(shù)用“★”表示在圖1中,判斷這片樹葉更可能來自于A、B、C中的哪棵樹?并給出你的理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x,y的方程組,則下列結(jié)論中正確的是_____
①當(dāng)a=5時,方程組的解是;
②當(dāng)x,y值互為相反數(shù)時,a=20;
③當(dāng)2x2y=16時,a=18;
④不存在一個實數(shù)a使得x=y.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場用14500元購進甲、乙兩種礦泉水共500箱,礦泉水的成本價與銷售價如表(二)所示:
類別 | 成本價(元/箱) | 銷售價(元/箱) |
甲 | 25 | 35 |
乙 | 35 | 48 |
求:(1)購進甲、乙兩種礦泉水各多少箱?
(2)該商場售完這500箱礦泉水,可獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點A(1,0),B(2,0),C(0,﹣2),直線x=m(m>2)與x軸交于點D.
(1)求二次函數(shù)的解析式;
(2)在直線x=m(m>2)上有一點E(點E在第四象限),使得E、D、B為頂點的三角形與以A、O、C為頂點的三角形相似,求E點坐標(biāo)(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,拋物線上是否存在一點F,使得四邊形ABEF為平行四邊形?若存在,請求出F點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平面內(nèi)有A、B、C、D四點,請按下列要求作圖.
(1)作射線AC,線段DC;
(2)作∠BAD的補角,并標(biāo)上字母;
(3)用量角器量出∠BAC的度數(shù),并求出它的余角的度數(shù)(精確到度);
(4)在圖中求作一點P,使P點到A、B、C、D四點的距離和最短.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠ABC=∠ADC=90°,BD平分∠ABC,∠DCB=60°,AB+BC=8,則AC的長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程mx2-2x+1=0.
(1)若方程有兩個實數(shù)根,求m的取值范圍;
(2)若方程的兩個實數(shù)根為x1,x2,且x1x2-x1-x2=,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com