【題目】如圖,△ABO縮小后變?yōu)椤鰽′B′O,其中A、B的對應(yīng)點分別為A′,B′,A′,B′均在圖中格點上,若線段AB上有一點P(m,n),則點P在A′B′上的對應(yīng)點P′的坐標(biāo)為(
A.( ,n)??
B.(m,n)??
C.( , )??
D.(m,

【答案】C
【解析】解:∵△ABO縮小后變?yōu)椤鰽′B′O,其中A、B的對應(yīng)點分別為A′、B′點A、B、A′、B′均在圖中在格點上, 即A點坐標(biāo)為:(4,6),B點坐標(biāo)為:(6,2),A′點坐標(biāo)為:(2,3),B′點坐標(biāo)為:(3,1),
∴線段AB上有一點P(m,n),則點P在A′B′上的對應(yīng)點P′的坐標(biāo)為:( , ).
故選C.
根據(jù)A,B兩點坐標(biāo)以及對應(yīng)點A′,B′點的坐標(biāo)得出坐標(biāo)變化規(guī)律,進(jìn)而得出P′的坐標(biāo).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,一次函數(shù)y=﹣2x+1與反比例函數(shù)y= 的圖象有兩個交點A(﹣1,m)和B,過點A作AE⊥x軸,垂足為點E;過點B作BD⊥y軸,垂足為點D,且點D的坐標(biāo)為(0,﹣2),連接DE.
(1)求k的值;
(2)求四邊形AEDB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從長度分別為2、3、4、5的4條線段中任取3條,能構(gòu)成鈍角三角形的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖中是拋物線拱橋,P處有一照明燈,水面OA寬4m,從O、A兩處觀測P處,仰角分別為α、β,且tanα= ,tan ,以O(shè)為原點,OA所在直線為x軸建立直角坐標(biāo)系.
(1)求點P的坐標(biāo);
(2)水面上升1m,水面寬多少( 取1.41,結(jié)果精確到0.1m)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】釣魚島自古就是中國的領(lǐng)土,中國有關(guān)部門已對釣魚島及其附屬島嶼開展常態(tài)化監(jiān)視監(jiān)測.一日,中國一艘海監(jiān)船從A點沿正北方向巡航,其航線距釣魚島(設(shè)M,N為該島的東西兩端點)最近距離為14.4km(即MC=14.4km).在A點測得島嶼的西端點M在點A的北偏東42°方向;航行4km后到達(dá)B點,測得島嶼的東端點N在點B的北偏東56°方向,(其中N,M,C在同一條直線上),求釣魚島東西兩端點MN之間的距離(結(jié)果精確到0.1km).(參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,sin56°≈0.83,cos56°≈0.56,tan56°≈1.48)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠ACB=90°,AC=1,BC= ,點O為Rt△ABC內(nèi)一點,連接AO、BO、CO,且∠AOC=∠COB=∠BOA=120°,則OA+OB+OC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,AO是角平分線,D為AO上一點,作△CDE,使DE=DC,∠EDC=∠BAC,連接BE.

(1)若∠BAC=60°,求證:△ACD≌△BCE;
(2)若∠BAC=90°,AD=DO,求 的值;
(3)若∠BAC=90°,F(xiàn)為BE中點,G為 BE延長線上一點,CF=CG,AD=nDO,直接寫出 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上,點A表示1,現(xiàn)將點A沿x軸做如下移動,第一次點A向左移動3個單位長度到達(dá)點A1 , 第二次將點A1向右移動6個單位長度到達(dá)點A2 , 第三次將點A2向左移動9個單位長度到達(dá)點A3 , 按照這種移動規(guī)律移動下去,第n次移動到點An , 如果點An與原點的距離不小于20,那么n的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E、F分別是AB、CD的中點.

(1)求證:四邊形EBFD為平行四邊形;
(2)對角線AC分別與DE、BF交于點M、N,求證:△ABN≌△CDM.

查看答案和解析>>

同步練習(xí)冊答案