【題目】某籃球運(yùn)動(dòng)員去年共參加40場(chǎng)比賽,其中3分球的命中率為0.25,平均每場(chǎng)有12次3分球未投中.
(1)該運(yùn)動(dòng)員去年的比賽中共投中多少個(gè)3分球?
(2)在其中的一場(chǎng)比賽中,該運(yùn)動(dòng)員3分球共出手20次,小亮說(shuō),該運(yùn)動(dòng)員這場(chǎng)比賽中一定投中了5個(gè)3分球,你認(rèn)為小亮的說(shuō)法正確嗎?請(qǐng)說(shuō)明理由.
【答案】
(1)解:設(shè)該運(yùn)動(dòng)員共出手x個(gè)3分球,根據(jù)題意,得
=12,
解得x=640,
0.25x=0.25×640=160(個(gè)),
答:運(yùn)動(dòng)員去年的比賽中共投中160個(gè)3分球;
(2)解:小亮的說(shuō)法不正確;
3分球的命中率為0.25,是40場(chǎng)比賽來(lái)說(shuō)的平均水平,而在其中的一場(chǎng)比賽中,命中率并不一定是0.25,所以該運(yùn)動(dòng)員這場(chǎng)比賽中不一定投中了5個(gè)3分球.
【解析】(1)設(shè)該運(yùn)動(dòng)員共出手x個(gè)3分球,則3分球命中0.25x個(gè),未投中0.75x個(gè),根據(jù)“某籃球運(yùn)動(dòng)員去年共參加40場(chǎng)比賽,平均每場(chǎng)有12次3分球未投中”列出方程,解方程即可;(2)根據(jù)概率的意義知某事件發(fā)生的概率,就是在大量重復(fù)試驗(yàn)的基礎(chǔ)上事件發(fā)生的頻率穩(wěn)定到的某個(gè)值;由此加以理解即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】六一兒童節(jié),小文到公園游玩.看到公園的一段人行彎道MN(不計(jì)寬度),如圖,它與兩面互相垂直的圍墻OP、OQ之間有一塊空地MPOQN(MP⊥OP,NQ⊥OQ),他發(fā)現(xiàn)彎道MN上任一點(diǎn)到兩邊圍墻的垂線段與圍墻所圍成的矩形的面積都相等,比如:A、B、C是彎道MN上的三點(diǎn),矩形ADOG、矩形BEOH、矩形CFOI的面積相等.愛好數(shù)學(xué)的他建立了平面直角坐標(biāo)系(如圖),圖中三塊陰影部分的面積分別記為S1、S2、S3 , 并測(cè)得S2=6(單位:平方米).OG=GH=HI.
(1)求S1和S3的值;
(2)設(shè)T(x,y)是彎道MN上的任一點(diǎn),寫出y關(guān)于x的函數(shù)關(guān)系式;
(3)公園準(zhǔn)備對(duì)區(qū)域MPOQN內(nèi)部進(jìn)行綠化改造,在橫坐標(biāo)、縱坐標(biāo)都是偶數(shù)的點(diǎn)處種植花木(區(qū)域邊界上的點(diǎn)除外),已知MP=2米,NQ=3米.問一共能種植多少棵花木?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠AOB=30°,OC平分∠AOB,在OA上有一點(diǎn)M,OM=10 cm,現(xiàn)要在OC,OA上分別找點(diǎn)Q,N,使QM+QN最小,則其最小值為________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】
(1)如圖1,Rt△ABC中,∠B=90°,AB=2BC,現(xiàn)以C為圓心、CB長(zhǎng)為半徑畫弧交邊AC于D,再以A為圓心、AD為半徑畫弧交邊AB于E.求證: = .(這個(gè)比值 叫做AE與AB的黃金比.)
(2)如果一等腰三角形的底邊與腰的比等于黃金比,那么這個(gè)等腰三角形就叫做黃金三角形.請(qǐng)你以圖2中的線段AB為腰,用直尺和圓規(guī),作一個(gè)黃金三角形ABC. (注:直尺沒有刻度!作圖不要求寫作法,但要求保留作圖痕跡,并對(duì)作圖中涉及到的點(diǎn)用字母進(jìn)行標(biāo)注)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系xOy中,點(diǎn)A、B分別在函數(shù)y1= (x>0)與y2=﹣ (x<0)的圖象上,A、B的橫坐標(biāo)分別為
a、b.
(1)若AB∥x軸,求△OAB的面積;
(2)若△OAB是以AB為底邊的等腰三角形,且a+b≠0,求ab的值;
(3)作邊長(zhǎng)為3的正方形ACDE,使AC∥x軸,點(diǎn)D在點(diǎn)A的左上方,那么,對(duì)大于或等于4的任意實(shí)數(shù)a,CD邊與函數(shù)y1= (x>0)的圖象都有交點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠BAC=110°,DE、FG分別為AB、AC的垂直平分線,E、G分別為垂足.
(1)求∠DAF的度數(shù);
(2)如果BC=10cm,求△DAF的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知l1⊥l2 , ⊙O與l1 , l2都相切,⊙O的半徑為2cm,矩形ABCD的邊AD、AB分別與l1 , l2重合,AB=4 cm,AD=4cm,若⊙O與矩形ABCD沿l1同時(shí)向右移動(dòng),⊙O的移動(dòng)速度為3cm/s,矩形ABCD的移動(dòng)速度為4cm/s,設(shè)移動(dòng)時(shí)間為t(s)
(1)如圖①,連接OA、AC,則∠OAC的度數(shù)為°;
(2)如圖②,兩個(gè)圖形移動(dòng)一段時(shí)間后,⊙O到達(dá)⊙O1的位置,矩形ABCD到達(dá)A1B1C1D1的位置,此時(shí)點(diǎn)O1 , A1 , C1恰好在同一直線上,求圓心O移動(dòng)的距離(即OO1的長(zhǎng));
(3)在移動(dòng)過程中,圓心O到矩形對(duì)角線AC所在直線的距離在不斷變化,設(shè)該距離為d(cm),當(dāng)d<2時(shí),求t的取值范圍(解答時(shí)可以利用備用圖畫出相關(guān)示意圖).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若α、β為方程2x2﹣5x﹣1=0的兩個(gè)實(shí)數(shù)根,則2α2+3αβ+5β的值為( )
A.﹣13
B.12
C.14
D.15
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】自2016年國(guó)慶后,許多高校均投放了使用手機(jī)就可隨用的共享單車.某運(yùn)營(yíng)商為提高其經(jīng)營(yíng)的A品牌共享單車的市場(chǎng)占有率,準(zhǔn)備對(duì)收費(fèi)作如下調(diào)整:一天中,同一個(gè)人第一次使用的車費(fèi)按0.5元收取,每增加一次,當(dāng)次車費(fèi)就比上次車費(fèi)減少0.1元,第6次開始,當(dāng)次用車免費(fèi).具體收費(fèi)標(biāo)準(zhǔn)如下:
使用次數(shù) | 0 | 1 | 2 | 3 | 4 | 5(含5次以上) |
累計(jì)車費(fèi) | 0 | 0.5 | 0.9 | a | b | 1.5 |
同時(shí),就此收費(fèi)方案隨機(jī)調(diào)查了某高校100名師生在一天中使用A品牌共享單車的意愿,得到如下數(shù)據(jù):
使用次數(shù) | 0 | 1 | 2 | 3 | 4 | 5 |
人數(shù) | 5 | 15 | 10 | 30 | 25 | 15 |
(Ⅰ)寫出a,b的值;
(Ⅱ)已知該校有5000名師生,且A品牌共享單車投放該校一天的費(fèi)用為5800元.試估計(jì):收費(fèi)調(diào)整后,此運(yùn)營(yíng)商在該校投放A品牌共享單車能否獲利?說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com