【題目】一副三角板的三個內(nèi)角分別是90,45,45和90,60,30,按如圖所示疊放在一起,若固定三角形AOB,改變?nèi)切?/span>ACD的位置(其中點A位置始終不變),可以擺成不同的位置,使兩塊三角板至少有一組邊平行。設(shè)∠BAD=α(0<α<180)
(1)如圖1中,請你探索當(dāng)α為多少時,CD∥OB,并說明理由;
(2)如圖2中,當(dāng)α=___時,AD∥OB;
(3)在點A位置始終不變的情況下,你還能擺成幾種不同的位置,使兩塊三角板中至少有一組邊平行,請直接寫出符合要求的α的度數(shù)。(寫出三個即可)
【答案】(1)15°(2)45°(3)105°或135°或150°或165°或135°或75°或45°或30°
【解析】
(1)由平行內(nèi)錯角相等得:∠AEC=∠B=45°,再由三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和可得α=15°;
(2)圖3中,直接由平行內(nèi)錯角得出α=∠B=45°;
(3)分別畫出圖形,根據(jù)各圖形求出α的值.
(1)如圖1,當(dāng)∠α=15°,CD∥OB,
∵∠D=30°,∠α=15°,
∴∠1=45°,
∵∠B=45°,
∴∠1=∠B,
∴CD∥OB。
(2)當(dāng)α=45°時,AD∥OB,
∵∠B=45°,
∴∠α=∠B,
∴AD∥OB;
故答案為:45°.
(3)①如圖3,AO∥CD
∴∠D+∠DAO=180°,
∴∠BAD=180°45°30°=105°,
∴當(dāng)α=105°時,CD∥OA;
②如圖4,AC∥OB
∴∠CAB=∠B=45°,
∴∠BAD=∠CAB+∠CAD=45°+90°=135°,
∴當(dāng)α=135°時,AC∥OB;
③如圖5,DC∥AB
∴∠C=∠BAC=60°,
∴∠BAD=90°+60°=150°,
∴當(dāng)α=150°時,DC∥AB;
④如圖6,DC∥OB
連接BC,
∵DC∥OB,
∴∠DCB+∠OBC=180°,
∵∠ACD=60°,∠OBA=45°,
∴∠ACB+∠ABC=180°60°45°=75°,
∴∠CAB=105°,
∴∠BAD=360°90°105°=165°,
∴當(dāng)α=165°時,CD∥OB;
⑤如圖7,AD∥OB,
∴∠DAO=∠O=90°,
∴∠BAD=90°+45°=135°,
∴當(dāng)α=135°時,AD∥OB;
⑥如圖8,CD∥OA,
∴∠D=∠DAO=30°,
∴∠BAD=30°+45°=75°,
∴當(dāng)α=75°時,CD∥OA;
⑦如圖9,AC∥OB
∴AO與AD重合,
∴∠BAD=45°,
∴當(dāng)α=45°時,AC∥OB;
⑧如圖10,OC∥AB
∴∠BAD=∠D=30°,
∴當(dāng)α=30°時,OC∥AB.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,,點在射線上,.
(1)如圖 1,若,求的度數(shù);
(2)把“°”改為“”,射線 沿射線 平移,得到,其它條件不變(如 圖 2 所示),探究 的數(shù)量關(guān)系;
(3)在(2)的條件下,作,垂足為 ,與 的角平分線 交于點,若 , 用含 α 的式子表示(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算題
1、計算、 +()﹣1﹣4tan45° 2、 解方程:x2=3x.
(1)計算: +( )﹣1﹣4tan45°
(2)解方程:x2=3x.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點B,C,D都在⊙O上,過C點作CA∥BD交OD的延長線于點A,連接BC,∠B=∠A=30°,BD=2 .
(1)求證:AC是⊙O的切線;
(2)求由線段AC、AD與弧CD所圍成的陰影部分的面積.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=150°,AC=4,tanB= .
(1)求BC的長;
(2)利用此圖形求tan15°的值(精確到0.1,參考數(shù)據(jù): =1.4, =1.7, =2.2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明拿兩個大小不等直角三角板作拼圖,如圖①小三角板的斜邊與大三角板直角邊正好重合,已知:AD=1,∠B=∠ACD=30°.
(1)AB的長;四邊形ABCD的面積=(直接填空);
(2)如圖2,若小明將小三角板ACD沿著射線AB方向平移,設(shè)平移的距離為m(平移距離指點A沿AB方向鎖經(jīng)過的線段長度),當(dāng)點D平移到線段大三角板ABC的邊上時,求出相應(yīng)的m的值;
(3)如圖3,小明將小三角板ACD繞點A順時針旋轉(zhuǎn)一個角α(0°<α<180°),記旋轉(zhuǎn)中的△ACD為△AC′D′,在旋轉(zhuǎn)過程中,設(shè)C′D′所在的直線與直線BC交于點P,與直線AB交于點Q,是否存在這樣的P、Q兩點,使△BPQ為等腰三角形?若存在,請直接求出此時D′Q的長;若不存在,請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,△OAB的頂點A在x軸正半軸上,OC是△OAB的中線,點B,C在反比例函數(shù)y= (x>0)的圖象上,若△OAB的面積等于6,則k的值為( )
A.2
B.4
C.6
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,點 D 是邊 BC 上的點(與 B、C 兩點不重合),過點 D作 DE∥AC,DF∥AB,分別交 AB、AC 于 E、F 兩點,下列說法正確的是( )
A. 若 AD 平分∠BAC,則四邊形 AEDF 是菱形
B. 若 BD=CD,則四邊形 AEDF 是菱形
C. 若 AD 垂直平分 BC,則四邊形 AEDF 是矩形
D. 若 AD⊥BC,則四邊形 AEDF 是矩形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com