【題目】如圖,有一塊直角三角形紙片,AC=6,BC=8,現(xiàn)將△ABC沿直線AD折疊,使AC落在斜邊AB上,且C與點E重合,則AD的長為________.
【答案】
【解析】
根據(jù)折疊的性質(zhì)可得AC=AE=6,CD=DE,∠ACD=∠AED=∠DEB=90°,利用勾股定理列式求出AB,從而求出BE,設(shè)CD=DE=x,表示出BD,然后在Rt△DEB中,利用勾股定理列出關(guān)于x的方程可求得CD的長,最后在△ACD中,依據(jù)勾股定理可求得AD的長.
∵△ACD與△AED關(guān)于AD成軸對稱,
∴AC=AE=6cm,CD=DE,∠ACD=∠AED=∠DEB=90°,
在Rt△ABC中,AB2=AC2+BC2=62+82 =102,
∴AB=10,
BE=AB-AE=10-6=4,
設(shè)CD=DE=xcm,則DB=BC-CD=8-x,
在Rt△DEB中,由勾股定理,得x2+42=(8-x)2,
解得x=3,即CD=3cm.
在△ACD中,AD=.
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(閱讀理解)
在解方程組或求代數(shù)式的值時,可以用整體代入或整體求值的方法,化難為易.
(1)解方程組
(2)已知,求x+y+z的值
解:(1)把②代入①得:x+2×1=3.解得:x=1.
把x=1代入②得:y=0.
所以方程組的解為,
(2)①×2得:8x+6y+4z=20.③
②﹣③得:x+y+z=5.
(類比遷移)
(1)若,則x+2y+3z= .
(2)解方程組
(實際應(yīng)用)
打折前,買39件A商品,21件B商品用了1080元.打折后,買52件A商品,28件B商品用了1152元,比不打折少花了多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在給定的一張平行四邊形紙片上按如下操作:連結(jié)AC,作AC的垂直平分線MN分別交AD、AC、BC于M、O、N,連結(jié)AN,CM,則四邊形ANCM是( 。
A. 矩形 B. 菱形 C. 正方形 D. 無法判斷
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
關(guān)于的方程:
的解為: ,
(可變形為)的解為: ,
的解為: ,
的解為: ,
…………
根據(jù)以上材料解答下列問題:
(1)①方程的解為 .
②方程的解為 .
(2)解關(guān)于方程:
① ()
②()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:有一組鄰邊相等的凸四邊形叫做“等鄰邊四邊形”.
(1)已知:如圖1,四邊形ABCD的頂點A,B,C在網(wǎng)格格點上,請你在如下的57的網(wǎng)格中畫出3個不同形狀的等鄰邊四邊形ABCD,要求頂點D在網(wǎng)格格點上;
(2)如圖2,矩形ABCD中,AB=,BC=5,點E在BC邊上,連結(jié)DE畫AFDE于點F,若DE=CD,找出圖中的等鄰邊四邊形;
(3)如圖3,在RtABC中,ACB=90°,AB=4,AC=2,D是BC的中點,點M是AB邊上一點,當(dāng)四邊形ACDM是“等鄰邊四邊形”時,求BM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文明,源遠(yuǎn)流長,中華漢字,寓意深廣。為了傳承優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校1500名學(xué)生參加的“漢字聽寫”大賽,為了更好地了解本次大賽的成績分布情況,隨機抽取了部分學(xué)生的成績作為樣本進(jìn)行整理,得到下列不完整的統(tǒng)計圖表. 請你根據(jù)表中提供的信息,解答下列問題:
成績x/分 | 頻數(shù) | 頻率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 20 | 0.10 |
70≤x<80 | 30 | b |
80≤x<90 | a | 0.30 |
90≤x≤100 | 80 | 0.40 |
(1)此次調(diào)查的樣本容量為_____;
(2)在表中:=_____,=______;
(3)補全頻數(shù)分布直方圖;
(4)若成績在80分以上(包括80分)的為“A”級,則該校參加這次比賽的1500名學(xué)生中,成績?yōu)?/span>“A”級的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于A、B兩點.
(1)利用圖中的條件,求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線交 y軸于點為A,頂點為D,對稱軸與x軸交于點H.
(1)求頂點D的坐標(biāo)(用含m的代數(shù)式表示);
(2)當(dāng)拋物線過點(1,-2),且不經(jīng)過第一象限時,平移此拋物線到拋物線的位置,求平移的方向和距離;
(3)當(dāng)拋物線頂點D在第二象限時,如果∠ADH=∠AHO,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廣場上一個形狀是平行四邊形的花壇,分別種有紅、黃、藍(lán)、白、橙、紫6種顏色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列說法中錯誤的是( 。
A.紅花,白花種植面積一定相等
B.紅花,藍(lán)花種植面積一定相等
C.藍(lán)花,黃花種植面積一定相等
D.紫花,橙花種植面積一定相等
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com