【題目】如圖,點E在DF上,點B在AC上,∠1=∠2,∠C=∠D.
試說明:AC∥DF.將過程補充完整.
解:∵∠1=∠2(
∠1=∠3(
∴∠2=∠3(

∴∠C=∠ABD (
又∵∠C=∠D(
∴∠D=∠ABD(
∴AC∥DF(

【答案】已知;對頂角相等;等量代換;BD;CE;同位角相等,兩直線平行;兩直線平行,同位角相等;已知;等量代換;內(nèi)錯角相等,兩直線平行
【解析】解:∵∠1=∠2( 已知),
∠1=∠3( 對頂角相等),
∴∠2=∠3( 等量代換),
∴BD∥CE( 同位角相等,兩直線平行),
∴∠C=∠ABD ( 兩直線平行,同位角相等),
又∵∠C=∠D( 已知),
∴∠D=∠ABD( 等量代換),
∴AC∥DF( 內(nèi)錯角相等,兩直線平行),
故答案為:已知;對頂角相等;等量代換;BD;CE;同位角相等,兩直線平行;兩直線平行,同位角相等;已知;等量代換;內(nèi)錯角相等,兩直線平行.
由條件結(jié)合對頂角相等可證明BD∥CE,可得到∠C=∠ABD,再結(jié)合條件可得到∠D=∠ABD,可證明AC∥DF,據(jù)此填空即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:拋物線y=x2+(2m1)x+m21經(jīng)過坐標原點,且當x<0時,y隨x的增大而減。

(1)求拋物線的解析式,并寫出y<0時,對應x的取值范圍;

(2)設點A是該拋物線上位于x軸下方的一個動點,過點A作x軸的平行線交拋物線于另一點D,再作ABx軸于點B,DCx軸于點C.

當BC=1時,直接寫出矩形ABCD的周長;

設動點A的坐標為(a,b),將矩形ABCD的周長L表示為a的函數(shù)并寫出自變量的取值范圍,判斷周長是否存在最大值?如果存在,求出這個最大值,并求出此時點A的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各組數(shù)中,以ab、c為邊的三角形不是直角三角形的是(

A. a=1.5,b=2,c=3 B. a=7b=24,c=25

C. a=6,b=8,c=10 D. a=0.3b=0.4,c=0.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一組數(shù)據(jù)1,2,4,3,24,2,5,6,1,它們的平均數(shù)為_______眾數(shù)為_______,中位數(shù)為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊三角形ABC的邊長為4,ADBC邊上的中線,FAD邊上的動點,EAC邊上一點AE2,EFCF取得最小值時,∠ECF的度數(shù)為( )

A. 20° B. 25° C. 30° D. 45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一副三角板中的兩塊直角三角尺的直角頂點C按如圖方式疊放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):
(1)①若∠DCE=35°,求∠ACB的度數(shù);
②若∠ACB=150°,求∠DCE的度數(shù);
(2)由(1)猜想∠ACB與∠DCE的數(shù)量關系,并說明理由.
(3)請你動手操作,現(xiàn)將三角尺ACD固定,三角尺BCE的CE邊與CA邊重合,繞點C順時針方向旋轉(zhuǎn),當0°<∠ACE<180°且點E在直線AC的上方時,這兩塊三角尺是否存在一組邊互相平行?若存在,請直接寫出∠ACE角度所有可能的值(不必說明理由);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,觀察圖象,回答問題:

(1)D的縱坐標等于____

(2)A的橫坐標是方程______的解

(3)大于點B橫坐標的x的值是不等式________的解

(4)C的橫、縱坐標是方程組_________的解

(5)小于點C橫坐標的x的值是不等式__________的解

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖①、②,解答下面各題:
(1)圖①中,∠AOB=55°,點P在∠AOB內(nèi)部,過點P作PE⊥OA,PF⊥OB,垂足分別為E、F,求∠EPF的度數(shù).
(2)圖②中,點P在∠AOB外部,過點P作PE⊥OA,PF⊥OB,垂足分別為E、F,那么∠P與∠O有什么關系?為什么?
(3)通過上面這兩道題,你能說出如果一個角的兩邊分別垂直于另一個角的兩邊,則這兩個角是什么關系?
(4)如果一個角的兩邊分別平行于另一個角的兩邊,則這兩個角是什么關系?(請畫圖說明結(jié)果,不需要過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:用2輛A型車和1輛B型車載滿貨物一次可運貨10噸;用1輛A型車和2輛B型車載滿貨物一次可運貨11噸.某物流公司現(xiàn)有31噸貨物,計劃同時租用A型車a輛,B型車b輛,一次運完,且恰好每輛車都載滿貨物.
根據(jù)以上信息,解答下列問題:
(1)1輛A型車和1輛車B型車都載滿貨物一次可分別運貨多少噸?
(2)請你幫該物流公司設計租車方案;
(3)若A型車每輛需租金100元/次,B型車每輛需租金120元/次.請選出最省錢的租車方案,并求出最少租車費.

查看答案和解析>>

同步練習冊答案