【題目】關(guān)于x的一元二次方程4x2+4(m﹣1)x+m2=0

(1)當m在什么范圍取值時,方程有兩個實數(shù)根?

(2)設(shè)方程有兩個實數(shù)根x1 , x2 , 問m為何值時,x12+x22=17?

(3)若方程有兩個實數(shù)根x1,x2, 問x1和x2能否同號?若能同號,請求出相應(yīng)m的取值范圍;若不能同號,請說明理由.

【答案】(1)證明見解析(2)m=﹣4(3)m≠0,且m≤

【解析】

(1)根據(jù)根的判別式,列出不等式求解即可;

(2)根據(jù)根與系數(shù)的關(guān)系得出x1+x2=1﹣m,x1x2=代入方程求解;

(3) 根據(jù)當m≤時,方程有兩個實數(shù)根,由(2)知,x1x2=,

>0,可得m的取值范圍.

(1)∵當△=[4(m﹣1)]2﹣4×4m2=﹣8m+4≥0時,方程有兩個實數(shù)根,

即m≤,

∴當m≤時,方程有兩個實數(shù)根;

(2)根據(jù)根與系數(shù)關(guān)系得:x1+x2=﹣=1﹣m,x1x2=,

∵x12+x22=17,

∴(x1+x22﹣2x1x2=17,

∴(1﹣m)2=17

解得:m1=8,m2=﹣4,

∵當m≤時,方程有兩個實數(shù)根,

∴m=﹣4;

(3)∵由(1)知當m≤時,方程有兩個實數(shù)根,由(2)知,x1x2=,

>0,

∴當m≠0,且m≤時,x1和x2能同號,

即m的取值范圍是:m≠0,且m≤

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知的外角的平分線,且的延長線于點

1)若恰好垂直平分,求的度數(shù);

2)王涵探究后提出等式:,請通過證明判斷“王涵發(fā)現(xiàn)”是否正確;

3)如圖②,過點,垂足為,若,,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,己知A(0,8),B(6,0),點M、N分別是線段AB、AO上的動點,點M從點B出發(fā),以每秒2個單位的速度向點A運動,點N從點A出發(fā),以每秒1個單位的速度向點O運動,點M、N中有一個點停止時,另一個點也停止。設(shè)運動時間為t秒。

(1)當t為何值時,MAB的中點;

(2)當t為何值時,△AMN為直角三角形

(3)當t為何值時,△AMN是等腰三角形?并求此時點M的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】興趣小組的同學(xué)要測量樹的高度.在陽光下,一名同學(xué)測得一根長為米的竹竿的影長為米,同時另一名同學(xué)測量樹的高度時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分落在教學(xué)樓的第一級臺階上,測得此影子長為米,一級臺階高為米,如圖所示,若此時落在地面上的影長為米,則樹高為(

A. 11.5 B. 11.75 C. 11.8 D. 12.25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(13分)如圖,在菱形ABCD中,M,N分別是邊AB,BC的中點,MPAB交邊CD于點P,連接NM,NP.

(1)若B=60°,這時點P與點C重合,則NMP= 度;

(2)求證:NM=NP;

(3)當NPC為等腰三角形時,求B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某水果店進行了一次促銷活動,一次性購買種水果的單價(元)與購買量(千克)的函數(shù)關(guān)系如圖

1)當時,單價_______

2)求圖中第段函數(shù)圖象的解析式,并指出的取值范圍

3)促銷活動期間,張老師計劃去該店買種水果10千克,那么張老師共需花費多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017湖南株洲第21題)某次世界魔方大賽吸引世界各地共600名魔方愛好者參加,本次大賽首輪進行3×3階魔方賽,組委會隨機將愛好者平均分到20個區(qū)域,每個區(qū)域30名同時進行比賽,完成時間小于8秒的愛好者進入下一輪角逐;如圖是3×3階魔方賽A區(qū)域30名愛好者完成時間統(tǒng)計圖,求:

A區(qū)域3×3階魔方愛好者進入下一輪角逐的人數(shù)的比例(結(jié)果用最簡分數(shù)表示).

②若3×3階魔方賽各個區(qū)域的情況大體一致,則根據(jù)A區(qū)域的統(tǒng)計結(jié)果估計在3×3階魔方賽后進入下一輪角逐的人數(shù).

③若3×3階魔方賽A區(qū)域愛好者完成時間的平均值為8.8秒,求該項目賽該區(qū)域完成時間為8秒的愛好者的概率(結(jié)果用最簡分數(shù)表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某科技開發(fā)公司研制出一種新型產(chǎn)品,每件產(chǎn)品的成本為2400元,銷售單價定為3000元.在該產(chǎn)品的試銷期間,為了促銷,鼓勵商家購買該新型產(chǎn)品,公司決定商家一次購買這種新型產(chǎn)品不超過10件時,每件按3000元銷售;若一次購買該種產(chǎn)品超過10件時,每多購買一件,所購買的全部產(chǎn)品的銷售單價均降低10元,但銷售單價均不低于2600元.

(1)商家一次購買這種產(chǎn)品多少件時,銷售單價恰好為2600元?

(2)設(shè)商家一次購買這種產(chǎn)品x件,開發(fā)公司所獲的利潤為y元,求y(元)與x(件)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

(3)該公司的銷售人員發(fā)現(xiàn):當商家一次購買產(chǎn)品的件數(shù)超過某一數(shù)量時,會出現(xiàn)隨著一次購買的數(shù)量的增多,公司所獲的利潤反而減少這一情況.為使商家一次購買的數(shù)量越多,公司所獲的利潤最大,公司應(yīng)將最低銷售單價調(diào)整為多少元(其它銷售條件不變)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,C是半圓O上一點,CD是⊙O的切線,ODBCOD與半圓O交于點E,則下列結(jié)論中不一定正確的是( 。

A. ACBCB. BE平分∠ABCC. BECDD. D=A

查看答案和解析>>

同步練習(xí)冊答案