【題目】若m﹣n=﹣1,則(m﹣n)2﹣2m+2n的值是(
A.3
B.2
C.1
D.﹣1

【答案】A
【解析】解:∵m﹣n=﹣1, ∴(m﹣n)2﹣2m+2n=(m﹣n)2﹣2(m﹣n)=1+2=3.
故選:A.
【考點(diǎn)精析】掌握代數(shù)式求值是解答本題的根本,需要知道求代數(shù)式的值,一般是先將代數(shù)式化簡,然后再將字母的取值代入;求代數(shù)式的值,有時(shí)求不出其字母的值,需要利用技巧,“整體”代入.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面上有三個(gè)點(diǎn),以其中兩點(diǎn)為端點(diǎn)畫線段,共可畫__________線段.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=﹣x2+2x﹣3,則y的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中(AD>AB),點(diǎn)EBC上一點(diǎn),且DE=DA,AF⊥DE,垂足為點(diǎn)F,在下列結(jié)論中,不一定正確的是( 。

A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l:y=﹣x+1與x軸,y軸分別交于A,B兩點(diǎn),點(diǎn)P,Q是直線l上的兩個(gè)動點(diǎn),且點(diǎn)P在第二象限,點(diǎn)Q在第四象限,∠POQ=135°.

1求△AOB的周長;

2設(shè)AQ=t>0,試用含t的代數(shù)式表示點(diǎn)P的坐標(biāo);

3當(dāng)動點(diǎn)P,Q在直線l上運(yùn)動到使得△AOQ與△BPO的周長相等時(shí),記tan∠AOQ=m,若過點(diǎn)A的二次函數(shù)y=ax2+bx+c同時(shí)滿足以下兩個(gè)條件:

①6a+3b+2c=0;

②當(dāng)m≤x≤m+2時(shí),函數(shù)y的最大值等于,求二次項(xiàng)系數(shù)a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若方程x2﹣4x﹣1=0的兩根為x1,x2,則x1x2﹣x1﹣x2=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)P為直線m外一點(diǎn),點(diǎn)A,B,C為直線m上三點(diǎn),PA=4cm,PB=5cm,PC=2cm,則點(diǎn)P直線m的距離為( )

A. 4cm B. 2cm C. 小于2cm D. 不大于2cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中:①因?yàn)椤?/span>1與∠2是對頂角,所以∠1=2;②因?yàn)椤?/span>1與∠2是鄰補(bǔ)角,所以∠1=2;③因?yàn)椤?/span>1與∠2不是對頂角,所以∠1≠2;④因?yàn)椤?/span>1與∠2不是鄰補(bǔ)角,所以∠1+2≠180°.

其中正確的有__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△AOB是等邊三角形,點(diǎn)A的坐標(biāo)是(0,4),點(diǎn)B在第一象限,點(diǎn)P是x軸上的一個(gè)動點(diǎn),連接AP,并把△AOP繞著點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn),使邊AO與AB重合,得到△ABD.

(1)求B的坐標(biāo);

(2)當(dāng)點(diǎn)P運(yùn)動到點(diǎn)(t,0)時(shí),試用含t的式子表示點(diǎn)D的坐標(biāo);

(3)是否存在點(diǎn)P,使△OPD的面積等于,若存在,請求出符合條件的點(diǎn)P的坐標(biāo)(直接寫出結(jié)果即可)

查看答案和解析>>

同步練習(xí)冊答案