【題目】冬天來了,曬衣服成了頭疼的事情,聰明的小華想到一個好辦法,在家后院地面(BD)上立兩根等長的立柱AB、CD(均與地面垂直),并在立柱之間懸掛一根繩子.由于掛的衣服比較多,繩子的形狀近似成了拋物線y=ax2﹣0.8x+c,如圖1,已知立柱AB=CD=2.6米,BD=8米.
(1)求繩子最低點離地面的距離;
(2)為了防止衣服碰到地面,小華在離AB為3米的位置處用一根垂直于地面的立柱MN撐起繩子(如圖2),使左邊拋物線F1的最低點距MN為1米,離地面1.6米,求MN的長.

【答案】
(1)解:∵拋物線經(jīng)過點A(0,2.6)、B(8,2.6),

,

解得,a=0.1,c=2.6,

∴y=0.1x2﹣0.8x+2.6=0.1(x﹣4)2+1,

∴當(dāng)x=4時,y取得最小值,此時y=1,

即繩子最低點離地面的距離1米


(2)解:由題意可得,拋物線F1的頂點坐標(biāo)為(2,1.6),

設(shè)拋物線F1的函數(shù)解析式為y=a1(x﹣2)2+1.6,

∵點A(0,2.6)在拋物線F1上,

∴2.6=a1(0﹣2)2+1.6,得a1=0.25,

∴拋物線F1的函數(shù)解析式為y=0.25(x﹣2)2+1.6,

當(dāng)x=3時,y=0.25(3﹣2)2+1.6=1.85,

即MN的長是1.85米


【解析】(1)根據(jù)題意可以求出拋物線的解析式,從而可以求得拋物線的頂點坐標(biāo),進而得到繩子最低點離地面的距離;(2)根據(jù)題意可以求得拋物線F1的函數(shù)解析式,然后將x=3代入求出的函數(shù)解析式即可解答本題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】黔東南州某中學(xué)為了解本校學(xué)生平均每天的課外學(xué)習(xí)實踐情況,隨機抽取部分學(xué)生進行問卷調(diào)查,并將調(diào)查結(jié)果分為A,B,C,D四個等級,設(shè)學(xué)生時間為t(小時),A:t<1,B:1≤t<1.5,C:1.5≤t<2,D:t≥2,根據(jù)調(diào)查結(jié)果繪制了如圖所示的兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中信息解答下列問題:

(1)本次抽樣調(diào)查共抽取了多少名學(xué)生?并將條形統(tǒng)計圖補充完整;
(2)本次抽樣調(diào)查中,學(xué)習(xí)時間的中位數(shù)落在哪個等級內(nèi)?
(3)表示B等級的扇形圓心角α的度數(shù)是多少?
(4)在此次問卷調(diào)查中,甲班有2人平均每天課外學(xué)習(xí)時間超過2小時,乙班有3人平均每天課外學(xué)習(xí)時間超過2小時,若從這5人中任選2人去參加座談,試用列表或化樹狀圖的方法求選出的2人來自不同班級的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小勇第一次拋一枚質(zhì)地均勻的硬幣時正面向上,他第二次再拋這枚硬幣時,正面向上的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點,AD與過點C的切線垂直,垂足為點D,直線DC與AB的延長線相交于點P,CE平分∠ACB,交AB于點E.

(1)求證:AC平分∠DAB;
(2)求證:△PCE是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑, = ,且AB=5,BD=4,求弦DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的口袋中裝有4個分別標(biāo)有數(shù)1,2,3,4的小球,它們的形狀、大小完全相同,小紅先從口袋里隨機摸出一個小球記下數(shù)為x,小穎在剩下的3個球中隨機摸出一個小球記下數(shù)為y,這樣確定了點P的坐標(biāo)(x,y).
(1)小紅摸出標(biāo)有數(shù)3的小球的概率是
(2)請你用列表法或畫樹狀圖法求點P(x,y)在函數(shù)y=﹣x+5圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB,添加一個條件,不能使四邊形DBCE成為矩形的是(
A.AB=BE
B.BE⊥DC
C.∠ADB=90°
D.CE⊥DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x﹣1與反比例函數(shù)y= 的圖象交于A、B兩點,與x軸交于點C,已知點A的坐標(biāo)為(﹣1,m).
(1)求反比例函數(shù)的解析式;
(2)若點P(n,﹣1)是反比例函數(shù)圖象上一點,過點P作PE⊥x軸于點E,延長EP交直線AB于點F,求△CEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=10,點D是邊BC上一動點(不與B,C重合),∠ADE=∠B=α,DE交AC于點E,且cosα= .下列結(jié)論:①△ADE∽△ACD;②當(dāng)BD=6時,△ABD與△DCE全等;③△DCE為直角三角形時,BD為8;④0<CE≤6.4.其中正確的結(jié)論是 . (把你認(rèn)為正確結(jié)論的序號都填上)

查看答案和解析>>

同步練習(xí)冊答案