【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣kx+m與雙曲線yx0)交于A、B兩點,點A的橫坐標(biāo)為1,點B的縱坐標(biāo)為2,點Py軸上一動點,當(dāng)△PAB的周長最小時,點P的坐標(biāo)是_______

【答案】(0,)

【解析】

由題意作A關(guān)于y軸的對稱點為A′,連接A′B,交y軸于P點,此時PA+PBA′B,則△PAB的周長最小,根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征求得A、B的坐標(biāo),進(jìn)而求得A′的坐標(biāo),利用待定系數(shù)法求得直線A′B的解析式,繼而求得P點的坐標(biāo).

解:作A關(guān)于y軸的對稱點為A′,連接A′B,交y軸于P點,

此時PA+PBA′B,則△PAB的周長最小,

x1代入y得,y8

∴A1,8),

y2代入y得,2,解得x4,

∴B4,2),

∴A′(﹣1,8),

A′(﹣18),B42)代入y=﹣kx+m,解得,

直線為y=﹣x+,

x0,則y

∴P0,),

故答案為(0,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年中國北京世界園藝博覽會(以下簡稱世園會”)429日至107日在北京延慶區(qū)舉行.世園會為滿足大家的游覽需求,傾情打造了4條各具特色的趣玩路線,分別是:解密世園會、愛我家,愛園藝、園藝小清新之旅快速車覽之旅.李欣和張帆都計劃暑假去世園會,他們各自在這4條線路中任意選擇一條線路游覽,每條線路被選擇的可能性相同.

(1)李欣選擇線路園藝小清新之旅的概率是多少?

(2)用畫樹狀圖或列表的方法,求李欣和張帆恰好選擇同一線路游覽的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中, 的中點,點上,且若在此矩形上存在一點,使得是等腰三角形,則點的個數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩地之間有一條筆直的公路,快車和慢車分別從甲、乙兩地同時出發(fā),沿這條公路勻速相向而行,快車到達(dá)乙地后停止行駛,慢車到達(dá)甲地后停止行駛,已知快車速度為.下圖為兩車之間的距離與慢車行駛時間的部分函數(shù)圖像.

1)甲、乙兩地之間的距離是______km;

2)點的坐標(biāo)為(4,____),解釋點的實際意義.

3)根據(jù)題意,補(bǔ)全函數(shù)圖像(標(biāo)明必要的數(shù)據(jù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】受“新冠”疫情的影響,某銷售商在網(wǎng)上銷售兩種型號的“手寫板”,獲利頗豐.已知型,型手寫板進(jìn)價、售價和每日銷量如表格所示:

進(jìn)價(元/個)

售價(元/個)

銷量(個/日)

根據(jù)市場行情,該銷售商對型手寫板降價銷售,同時對型手寫板提高售價,此時發(fā)現(xiàn)型手寫板每降低元就可多賣個,型手寫板每提高元就少賣個,要保持每天銷售總量不變,設(shè)其中型手寫板每天多銷售個,每天總獲利的利潤為

1)求之間的函數(shù)關(guān)系式并寫出的取值范圍;

2)要使每天的利潤不低于元,直接寫出的取值范圍;

3)該銷售商決定每銷售一個型手寫板,就捐元給因“新冠疫情”影響的困難家庭,當(dāng)時,每天的最大利潤為元,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù)y2x+b的圖象與x軸的交點為A20),與y軸的交點為B,直線AB與反比例函數(shù)y的圖象交于點C(﹣1,m).

1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

2)直接寫出關(guān)于x的不等式2x+b的解集;

3)點P是這個反比例函數(shù)圖象上的點,過點PPMx軸,垂足為點M,連接OPBM,當(dāng)SABM2SOMP時,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠準(zhǔn)備生產(chǎn)甲、乙兩種商品共8萬件銷往“一帶一路”沿線國家和地區(qū),已知2件甲種商品與3件乙種商品的銷售額相同,3件甲種商品比2件乙種商品的銷售額多1500元.

1)甲種商品與乙種商品的銷售單價各多少元?

2)若甲、乙兩種商品的銷售總額不低于5400萬元,則至少銷售甲種商品多少萬件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)是一種簡易臺燈,在其結(jié)構(gòu)圖(2)中燈座為ABCBC伸出部分不計),A、C、D在同一直線上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,燈桿CD長為40cm,燈管DE長為15cm.(參考數(shù)據(jù):sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5cos30°=0.87,tan30°=0.58.)

1)求DE與水平桌面(AB所在直線)所成的角;

2)求臺燈的高(點E到桌面的距離,結(jié)果精確到0.1cm).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的頂點A1,1),B3,1),規(guī)定把正方形ABCD“先沿x軸翻折,再向左平移1個單位”為一次變換,這樣連續(xù)經(jīng)過2019次變換后,正方形ABCD的頂點C的坐標(biāo)為( 。

A. (﹣2018,3B. (﹣2018,﹣3

C. (﹣20163D. (﹣2016,﹣3

查看答案和解析>>

同步練習(xí)冊答案