【題目】文美書店決定用不多于20000元購進甲乙兩種圖書共1200本進行銷售.甲、乙兩種圖書的進價分別為每本20元、14元,甲種圖書每本的售價是乙種圖書每本售價的1.4倍,若用1680元在文美書店可購買甲種圖書的本數(shù)比用1400元購買乙種圖書的本數(shù)少10.

(1)甲乙兩種圖書的售價分別為每本多少元?

(2)書店為了讓利讀者,決定甲種圖書售價每本降低3元,乙種圖書售價每本降低2元,問書店應(yīng)如何進貨才能獲得最大利潤?(購進的兩種圖書全部銷售完.)

【答案】(1)甲種圖書售價每本28元,乙種圖書售價每本20元;(2)甲種圖書進貨533本,乙種圖書進貨667本時利潤最大.

【解析】1乙種圖書售價每本元,則甲種圖書售價為每本,根據(jù)1680元在文美書店可購買甲種圖書的本數(shù)比用1400元購買乙種圖書的本數(shù)少10列出方程求解即可;

2設(shè)甲種圖書進貨本,總利潤元,根據(jù)題意列出不等式及一次函數(shù),解不等式求出解集,從而確定方案進而求出利潤最大的方案.

1)設(shè)乙種圖書售價每本元,則甲種圖書售價為每本元.由題意得:

解得:

經(jīng)檢驗,是原方程的解.

所以,甲種圖書售價為每本元,

答:甲種圖書售價每本28元,乙種圖書售價每本20元.

2)設(shè)甲種圖書進貨本,總利潤元,則

又∵,

解得:

的增大而增大,

∴當(dāng)最大時最大,

∴當(dāng)本時最大,

此時,乙種圖書進貨本數(shù)為(本).

答:甲種圖書進貨533本,乙種圖書進貨667本時利潤最大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖:長方形ABCD中,點EBC邊的中點,將D折起,使點D落在點E處.

1)請你用尺規(guī)作圖畫出折痕和折疊后的圖形.(不要求寫已知,求作和作法,保留作圖痕跡)

2)若折痕與ADBC分別交于點M、N,與DE交于點O,求證△MDO≌△NEO

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線,把的直角三角板的直角頂點放在直線.將直角三角板在平面內(nèi)繞點任意轉(zhuǎn)動,若轉(zhuǎn)動的過程中,直線與直線的夾角為60°,則的度數(shù)為___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD是一高為4米的平臺,AB是與CD底部相平的一棵樹,在平臺頂C點測得樹頂A點的仰角α=30°,從平臺底部向樹的方向水平前進3米到達點E,在點E處測得樹頂A點的仰角β=60°,求樹高AB(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】禁漁期間,我漁政船在A處發(fā)現(xiàn)正北方向B處有一艘可以船只,測得A、B兩處距離為200海里,可疑船只正沿南偏東45°方向航行,我漁政船迅速沿北偏東30°方向前去攔截,經(jīng)歷4小時剛好在C處將可疑船只攔截.求該可疑船只航行的平均速度(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,物理教師為同學(xué)們演示單擺運動,單擺左右擺動中,在OA的位置時俯角∠EOA=30°,在OB的位置時俯角∠FOB=60°,若OC⊥EF,點A比點B高7cm.求:

(1)單擺的長度( ≈1.7);
(2)從點A擺動到點B經(jīng)過的路徑長(π≈3.1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】提出問題:

1)如圖,我們將圖(1)所示的凹四邊形稱為鏢形”.鏢形圖中,、的數(shù)量關(guān)系為____.

2)如圖(2),已知平分,,,求的度數(shù).

由(1)結(jié)論得:

所以

因為

所以

所以.

解決問題:

1)如圖(3),直線平分, 平分的外角,猜想、的數(shù)量關(guān)系是______

2)如圖(4),直線平分的外角, 平分的外角,猜想的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:A0,3),B30),C3,4)三點,點Px,﹣0.5x),當(dāng)ABP的面積等于ABC的面積時,則P點的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線AB經(jīng)過點A(6,0)、B(0,6),⊙O的半徑為2(O為坐標(biāo)原點),點P是直線AB上的一動點,過點P作⊙O的一條切線PQ,Q為切點,則切線長PQ的最小值為( )

A.
B.3
C.3
D.

查看答案和解析>>

同步練習(xí)冊答案