【題目】如圖,四邊形ABCD是菱形,對(duì)角線AC,BD相交于點(diǎn)O,DH⊥AB于點(diǎn)H,連接OH,∠CAD=20°,則∠DHO的度數(shù)是( 。
A.20°B.25°C.30°D.40°
【答案】A
【解析】
先根據(jù)菱形的性質(zhì)得OD=OB,AB∥CD,BD⊥AC,則利用DH⊥AB得到DH⊥CD,∠DHB=90°,所以OH為Rt△DHB的斜邊DB上的中線,得到OH=OD=OB,利用等腰三角形的性質(zhì)得∠1=∠DHO,然后利用等角的余角相等即可求出∠DHO的度數(shù).
解:∵四邊形ABCD是菱形,
∴OD=OB,AB∥CD,BD⊥AC,
∵DH⊥AB,
∴DH⊥CD,∠DHB=90°,
∴OH為Rt△DHB的斜邊DB上的中線,
∴OH=OD=OB,
∴∠1=∠DHO,
∵DH⊥CD,
∴∠1+∠2=90°,
∵BD⊥AC,
∴∠2+∠DCO=90°,
∴∠1=∠DCO,
∴∠DHO=∠DCA,
∵四邊形ABCD是菱形,
∴DA=DC,
∴∠CAD=∠DCA=20°,
∴∠DHO=20°,
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,D,E分別是△ABC兩邊的中點(diǎn),如果弧DE(可以是劣弧、優(yōu)弧或半圓)上的所有點(diǎn)都在△ABC的內(nèi)部或邊上,則稱弧DE為△ABC的中內(nèi)。,圖1中弧DE是△ABC其中的某一條中內(nèi)。
(1)如圖2,在邊長(zhǎng)為4的等邊△ABC中,D,E分別是AB,AC的中點(diǎn).畫(huà)出△ABC的最長(zhǎng)的中內(nèi)弧DE,并直接寫(xiě)出此時(shí)弧DE的長(zhǎng);
(2)在平面直角坐標(biāo)系中,已知點(diǎn)A(2,6),B(0,0),C(t,0),在△ABC中,D,E分別是AB,AC的中點(diǎn).
①若t=2,求△ABC的中內(nèi)弧DE所在圓的圓心P的縱坐標(biāo)的取值范圍;
②請(qǐng)寫(xiě)出一個(gè)t的值,使得△ABC的中內(nèi)弧DE所在圓的圓心P的縱坐標(biāo)可以取全體實(shí)數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊三角形ABC中,AB=4cm,以C為圓心,1cm長(zhǎng)為半徑畫(huà)⊙C,點(diǎn)P在⊙C上運(yùn)動(dòng),連接AP,并將AP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°至AP′,點(diǎn)D是邊AC的中點(diǎn),連接DP′.在點(diǎn)P移動(dòng)的過(guò)程中,線段DP′長(zhǎng)度的最小值為______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=α,將△ABC繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)到△A′B′C的位置,使AA′∥BC,設(shè)旋轉(zhuǎn)角為β,則α,β滿足關(guān)系( 。
A.α+β=90°B.α+2β=180°C.2α+β=180°D.α+β=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是一塊三角形材料,∠A=30°,∠C=90°,AB=6.用這塊材料剪出一個(gè)矩形DECF,點(diǎn)D,E,F分別在AB,BC,AC上,要使剪出的矩形DECF面積最大,點(diǎn)D應(yīng)該選在何處?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉?chǎng)購(gòu)物的支付方式更加多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了一份調(diào)查問(wèn)卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)并繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問(wèn)題:
(1)這次活動(dòng)共調(diào)查了 人;在扇形統(tǒng)計(jì)圖中,表示“支付寶”支付的扇形圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.觀察此圖,支付方式的“眾數(shù)”是“ ”;
(3)在一次購(gòu)物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種支付方式中選一種方式進(jìn)行支付,請(qǐng)用畫(huà)樹(shù)狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,點(diǎn)E在BC的延長(zhǎng)線上,且CE=BC,AE=AB,AE、DC相交于點(diǎn)O,連接DE.若∠AOD=120°,AC=4,則CD的大小為( 。
A.8B.4C.8D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知k是常數(shù),拋物線y=x2+(k2+k-6)x+3k的對(duì)稱軸是y軸,并且與x軸有兩個(gè)交點(diǎn).
(1)求k的值:
(2)若點(diǎn)P在拋物線y=x2+(k2+k-6)x+3k上,且P到y軸的距離是2,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】材料:思考的同學(xué)小斌在解決連比等式問(wèn)題:“已知正數(shù),,滿足,求的值”時(shí),采用了引入?yún)?shù)法,將連比等式轉(zhuǎn)化為了三個(gè)等式,再利用等式的基本性質(zhì)求出參數(shù)的值.進(jìn)而得出,,之間的關(guān)系,從而解決問(wèn)題.過(guò)程如下:
解;設(shè),則有:
,,,
將以上三個(gè)等式相加,得.
,,都為正數(shù),
,即,.
.
仔細(xì)閱讀上述材料,解決下面的問(wèn)題:
(1)若正數(shù),,滿足,求的值;
(2)已知,,,互不相等,求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com